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Preface

About mathematical psychology

There are three fuzzy and interrelated understandings of what mathemat-

ical psychology is: part of mathematics, part of psychology, and analytic method-

ology. We call them “fuzzy” because we do not offer a rigorous way of defining

them. As a rule, a work in mathematical psychology, including the chapters of this

handbook, can always be argued to conform to more than one if not all three of

these understandings (hence our calling them “interrelated”). Therefore, it seems

safer to think of them as three constituents of mathematical psychology that may

be differently expressed in any given line of work.

1. Part of mathematics

Mathematical psychology can be understood as a collection of mathematical devel-

opments inspired and motivated by problems in psychology (or at least those tra-

ditionally related to psychology). A good example for this is the algebraic theory

of semiorders proposed by R. Duncan Luce (1956). In algebra and unidimensional

topology there are many structures that can be called orders. The simplest one is

the total, or linear order (S, �), characterized by the following properties: for any

a, b, c ∈ S,

(O1) a � b or b � a;

(O2) if a � b and b � c then a � c;

(O3) if a � b and b � a then a = b.

The ordering relation here has the intuitive meaning of “not greater than.” One

can, of course, think of many other kinds of order. For instance, if we replace the

property (O1) with

(O4) a � a,

we obtain a weaker (less restrictive) structure, called a partial order. If we add

to the properties (O1–O3) the requirement that every nonempty subset X of S
possesses an element aX such that aX � a for any a ∈ X , then we obtain a stronger

(more restrictive) structure called a well-order. Clearly, one needs motivation for

ix
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x Preface

introducing and studying various types of order, and for one of them, semiorders,

it comes from psychology.1

Luce (1956) introduces the issue by the following example:

Find a subject who prefers a cup of coffee with one cube of sugar to one with five

cubes (this should not be difficult). Now prepare 401 cups of coffee with

(1 + i
100

)x grams of sugar, i = 0, 1, . . . , 400, where x is the weight of one cube

of sugar. It is evident that he will be indifferent between cup i and cup i + 1, for

any i, but by choice he is not indifferent between i = 0 and i = 400. (p. 179)

This example involves several idealizations, e.g., Luce ignores here the probabilis-

tic nature of a person’s judgments of sweetness/bitterness, treating the issue as if

a given pair of cups of coffee was always judged in one and the same way. How-

ever, this idealized example leads to the idea that there may be an interesting order

such that a ≺ b only if a and b are “sufficiently far apart”; otherwise a and b are

“too similar” to be ordered (a ∼ b). Luce formalizes this idea by the following four

properties of the structure (S, ≺, ∼): for any a, b, c, d ∈ S,

(SO1) exactly one of three possibilities obtains: either a ≺ b, or b ≺ a or else

a ∼ b;

(SO2) a ∼ a;

(SO3) if a ≺ b, b ∼ c and c ≺ d then a ≺ d;

(SO4) if a ≺ b, b ≺ c and b ∼ d then either a ∼ d or c ∼ d does not hold.

There are more compact ways of characterizing semiorders, but Luce’s seems most

intuitive.

Are there familiar mathematical entities that satisfy the requirements (SO1–

SO4)? Consider a set of reals and suppose that A is a set of half-open intervals

[x, y) with the following property: if [x1, y1) and [x2, y2) belong to A, then x1 ≤ x2

holds if and only if y1 ≤ y2. Let’s call the intervals in A monotonically ordered.

Define [x, y) ≺ [v, w) to mean y ≤ v . Define [x, y) ∼ [v, w) to mean that the two

intervals overlap. It is easy to check then that the system of monotonically ordered

intervals with the ≺ and ∼ relations just defined forms a semiorder.

As it turns out, under certain constraints imposed on S, the reverse of this state-

ment is also true. To simplify the mathematics, let us assume that S can be one-

to-one mapped onto an interval (finite or infinite) of real numbers. Thus, in Luce’s

example with cups of coffee we can assume that each cup is uniquely character-

ized by the weight of sugar in it. Then all possible cups of coffee form a set S
that is bijectively mapped onto an interval of reals between 1 and 5 cubes of sugar

(ignoring discreteness due to the molecular structure of sugar). Under this assump-

tion, it follows from a theorem proved by Peter Fishburn (1973) that the semiorder

(S, ≺,∼) has a monotonically ordered representation. The latter means that there

is a monotonically ordered set A of real intervals and a function f : S → A such

1 The real history, as often happens, is more complicated, and psychology was the main but not the
only source of motivation here (see Fishburn and Monjardet, 1992).
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Preface xi

that, for all a, b ∈ S,

a≺b if and only if f (a) = [x1, y1), f (b) = [x2, y2), and y1 ≤ x2; (0.1)

a∼b if and only if f (a) = [x1, y1), f (b) = [x2, y2), and [x1, y1) ∩ [x2, y2) 	= ∅.

(0.2)

Although as a source of inspiration for abstract mathematics psychology can-

not compete with physics, it has motivated several lines of mathematical devel-

opment. Thus, a highly sophisticated study of m-point-homogeneous and n-point-

unique monotonic homeomorphisms (mappings that are continuous together with

their inverses) of conventionally ordered real numbers launched by Louis Narens

(1985) and Theodore M. Alper (1987) was motivated by a well-known classifica-

tion of measurements by Stanley Smith Stevens (1946). In turn, this classification

was inspired by the variety of measurement procedures used in psychology, some

of them clearly different from those used in physics. Psychology has inspired and

continues to inspire abstract foundational studies in the representational theory of

measurement (essentially an area of abstract algebra with elements of topology),

probability theory, geometries based on nonmetric dissimilarity measures, topo-

logical and pre-topological structures, etc. Finally and prominently, the modern

developments in the area of functional equations, beginning with the highly influ-

ential work of János Aczél (1966), have been heavily influenced by problems in or

closely related to psychology.

2. Part of psychology

According to this understanding, mathematical psychology is simply psychological

theorizing and model-building in which mathematics plays a central role (but does

not necessarily evolve into new mathematical developments). A classical example

of work that falls within this category is Gustav Theodeor Fechner’s derivation of

his celebrated logarithmic law in the Elemente der Psychophysik (1861, Ch. 17).2

From this book (and this law) many date the beginnings of scientific psychology.

The problem Fechner faced was how to relate “magnitude of physical stimulus” to

“magnitude of psychological sensation,” and he came up with a principle: equal
ratios of stimulus magnitudes correspond to equal differences of sensation mag-
nitudes. This means that for any stimulus values x1, x2 (real numbers at or above

some positive threshold value x0) we have

ψ (x2) − ψ (x1) = F

(

x2

x1

)

, (0.3)

where ψ is the hypothetical psychophysical function (mapping stimulus mag-

nitudes into positive reals representing sensation magnitudes), and F is some

unknown function.

2 The account that follows is not a reconstruction but Fechner’s factual derivation (pp. 34–36 of vol. 2
of the Elemente). It has been largely overlooked in favor of the less general and less clearly presented
derivation of the logarithmic law in Chapter 16 (see Dzhafarov and Colonius, 2012).
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xii Preface

Once the equation was written, Fechner investigated it as a purely mathematical

object. First, he observed its consequence: for any three suprathreshold stimuli

x1, x2, x3,

F

(

x3

x1

)

= F

(

x3

x2

)

+ F

(

x2

x1

)

. (0.4)

Second, he observed that u = x2/x1 and v = x3/x2 can be any positive reals, and x3/x1

is the product of the two. We have therefore, for any u > 0 and v > 0,

F (uv ) = F (u) + F (v ). (0.5)

This is an example of a simple functional equation: the function is unknown, but it

is constrained by an identity that holds over a certain domain (positive reals).

Functional equations were introduced in pure mathematics only 40 years before

Fechner’s publication, by Augustin-Louis Cauchy, in his famous Cours d’analyse
(1821). Cauchy showed there that the only continuous solution for Equation (0.5)

is the logarithmic function

F (x) ≡ k log x, x > 0, (0.6)

where k is a constant. The functional equations of this kind were later called the

Cauchy functional equations. We know now that one need not even assume that F
is continuous. Thus, it is clear from (0.3) that F must be positive on at least some

interval of values for x2/x1: if x2 is much larger than x1, it is empirically plausible

to assume that ψ (x2) > ψ (x1). This alone is sufficient to derive (0.6) as the only

possible solution for (0.5), and to conclude that k is a positive constant.

The rest of the work for Fechner was also purely mathematical, but more ele-

mentary. Putting in (0.1) x2 = x (an arbitrary value) and x1 = x0 (the threshold

value), one obtains

ψ (x) − ψ (x0) = ψ (x) = k log

(

x

x0

)

, (0.7)

which is the logarithmic law of psychophysics. Fechner thus used sophisticated (by

standards of his time) mathematical work by Cauchy to derive the first justifiable

quantitative relation in the history of psychology. The value of Fechner’s reasoning

is entirely in psychology, bringing nothing new to mathematics, but the reasoning

itself is entirely mathematical.

There are many other problems and areas in psychology whose analysis falls

within the considered category because it essentially consists of purely mathemat-

ical reasoning. Thus, analysis of response times that involves distribution or quan-

tile functions is one such area, and so are some areas of psychophysics (especially,

theory of detection and discrimination), certain paradigms of decision making,

memory and learning, etc.
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Preface xiii

3. Analytic methodology

A third way one can think of mathematical psychology is as an applied, or service

field, a set methodological principles and techniques of experimental design, data

analysis, and model assessment developed for use by psychologists. The spectrum

of examples here extends from purely statistical research to methodology based on

substantive theoretical constructs falling within the scope of the first of our three

understandings of mathematical psychology.

A simple but representative example of the latter category is H. Richard Black-

well’s (1953) correction-for-guessing formula and recommended experimental

design. Blackwell considered a simple detection experiment: an observer is shown

a stimulus that may have a certain property and asked whether she is aware of this

property being present (Yes or No). Thus, the property may be an increment of

intensity �B in the center of a larger field of some fixed intensity B. Depending

on the value of �B, the observer responds Yes with some probability p. Blackwell

found that this probability p(�B) was not zero even at �B = 0. It was obvious to

Blackwell (but not to the detection theorists later on) that this indicated that the

observer was “guessing” that the signal was there, with probability pg = p(0). It is

clear, however, that the observer cannot distinguish the situation in which �B = 0

(and therefore, according to Blackwell, she could not perceive an intensity incre-

ment) from one in which �B > 0 but she failed to detect it. Assuming that �B is

detected with probability pd (�B), we have the following tree of possibilities:

�B
pd(�B)

�� ✉
✉✉
✉✉
✉✉
✉

✉✉
✉✉
✉✉
✉✉ 1−pd(�B)

��
▲▲

▲▲
▲▲

▲▲
▲

▲▲
▲▲

▲▲
▲▲

▲

detected

1

��

not detected

1−pg

��

pg

�� ✐✐✐
✐✐✐

✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐

✐✐✐
✐✐
✐✐✐

✐✐✐
✐✐
✐✐✐

✐✐✐

Yes No

We can now express the probability p(�B) of the observer responding Yes to �B
through the probability pd (�B) that she detects �B and the probability pg that she

says Yes even though she has not detected �B:

p(�B) = pd (�B) + (1 − pd (�B))pg. (0.8)

The value of pd (�B) decreases with decreasing �B, reaching zero at �B = 0. At

this value therefore the formula turns into

p(0) = pg, (0.9)

as it should. That is, pg is directly observable (more precisely, can be estimated

from data): it is the probability with which the observer says Yes to “catch” or

“empty” stimuli, those with �B = 0. Blackwell therefore should insist that catch

trials be an integral part of experimental design in any Yes/No detection exper-

iment. Once pg = p(0) is known (estimated), one can “correct” the observed
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xiv Preface

(estimated) probability p(�B) for any nonzero �B into the true probability of

detection:

pd (�B) =
p(�B) − p(0)

1 − p(0)
. (0.10)

Therefore, we end up with a strong recommendation on experimental design

(which is universally followed by all experimenters) and a formula for finding true

detection probabilities (which is by now all but abandoned). Therefore, Blackwell’s

work is an example of a methodological development to be used in experimental

design and data analysis. At the same time, however, it is also a substantive model

of sensory detection, and as such falls within the category of work in psychology

in which mathematics plays a central role. The mathematics here is technically

simple but ingeniously applied.

The list of methodological developments based on substantive psychological

ideas is long. Other classical examples it includes are Louis Leon Thurstone’s

(1927) analysis of pairwise comparisons and Georg Rasch’s analysis of item diffi-

culty and responder aptitude (1960).

On the other pole of the spectrum we find methodological developments that

have purely data-analytic character, and their relation to psychology is deter-

mined by historical tradition rather than internal logic of these developments. For

instance, nowadays we see a rapid growth of sophisticated Bayesian data-analytic

and model-comparison procedures, as well as those based on resampling and

permutation techniques. Some psychologists prefer to consider all these applied-

statistical developments part of psychometrics rather than mathematical psychol-

ogy. The relationship between the two disciplines is complex, but they are tradi-

tionally separated, with different societies and journals.

About this handbook

The New Handbook of Mathematical Psychology (NHMP) is about all

three of the meanings of mathematical psychology outlined above. The title of the

handbook stems from a very important series of three volumes called the Hand-
book of Mathematical Psychology (HMP), edited by R. Duncan Luce, Robert R.

Bush, and Eugene Galanter (1963a; 1963b; 1965). These three volumes played

an essential role in defining the character of a new field called mathematical psy-

chology that had begun only 10 years earlier. The 21 chapters of the HMP, total-

ing 1800 pages, were written by scholars who had ingeniously employed serious

mathematics in their work, such as information theory, automata theory, proba-

bility theory (including stochastic processes), logic, modern algebra, and set the-

ory. The HMP sparked a great deal of research eventually leading, among other

things, to the founding of the European Mathematical Psychology Group, the Soci-

ety for Mathematical Psychology, the Journal of Mathematical Psychology, and a
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number of special graduate programs within psychology departments in Europe

and the USA. In our view, the main feature of the HMP was that it focused on

foundational issues and emphasized mathematical ideas. These two foci were cen-

tral to the philosophy of the editors of the HMP, who believed that the founda-

tions of any serious science had to be mathematical. It is in this sense that our

concept of the NHMP derives from the HMP. We realize, however, we are attempt-

ing to fill very big shoes. Also, we are facing more complex circumstances than

were the editors and authors of the HMP. In the early 1960s there were fewer

topics to cover, and there was less material to cover in each topic: the chapters

therefore could very well be both conveyors of major mathematical themes and

surveyors of empirical studies. We have to be more selective to make our task

manageable.

One could see it as a success of mathematical psychology that almost every area

of psychology nowadays employs a variety of formal models and analytic methods,

some of them quite sophisticated. It seem also the case, however, that the task of

constructing new formal models in an area has to some extent displaced mathemat-

ical foundational work. Thus, in our modern age of computation, it is possible to

use formal probabilistic models and estimate them with standard statistical pack-

ages without a deep understanding of the probabilistic and mathematical under-

pinnings of the models’ assumptions. We hope the NHMP will serve to counteract

such tendencies.

Our goal in this and subsequent volumes of the NHMP is to focus on founda-

tional issues, on mathematical themes, ideas, theories, and approaches rather than

on empirical facts and specific competing models. Empirical studies are reviewed

in the NHMP primarily to motivate or illustrate a class of models or a mathematical

formulation. Rather than briefly touching on a large number of pertinent topics in

an attempt to provide a comprehensive overview, each chapter discusses in depth

and with relevant mathematical explanations just a few topics chosen for being

fundamental or highly representative of the field.

In relation to our “three fuzzy and interrelated understandings” of mathemati-

cal psychology, the first four chapters of the present volume can be classed into

the category “part of mathematics,” as they deal primarily with broad mathe-

matical themes. Chapter 1, by Hans Colonius, discusses the important notions

of probabilistic couplings and probabilistic copulas, as well as other foundational

notions of probabilistic analysis, such as Fŕechet–Hoeffding inequalities and dif-

ferent forms of stochastic dependence and stochastic ordering. The theme of foun-

dations of probability with a prominent role of probabilistic couplings continues in

Chapter 2, by Ehtibar Dzhafarov and Janne Kujala. It deals with systems of random

variables recorded under variable conditions and adds the notion of selectiveness

(in the dependence of the random variables on these conditions) to the conceptual

framework of probability theory. Chapter 3, by Che Tat Ng, takes on the tradi-

tional topic of functional equations. As we have seen, their use in mathematical

psychology dates back to Gustav Theodeor Fechner. Chapter 4, by John Boyd and
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William Batchelder, takes on the field of network analysis, focusing on discrete

networks representable by graphs and digraphs. The chapter presents algebraic

(matrix) methods of network analysis, as well as probabilistic networks, such as

Markov random fields.

Chapters 5–8 can be classed into the category “part of psychology,” as they

primarily deal with substantive theories and classes of models. In Chapter 5,

Jean-Paul Doignon and Jean-Claude Falmagne describe a theory of knowledge

and learning spaces, which are highly abstract pre- (or proto-) topological con-

structs that nevertheless have considerable applied value in assessment and guid-

ance of knowledge acquisition. Chapter 6, by McKenzie Alexander, is about inter-

disciplinary applications of classical game theory to dynamic systems, such as

behavior of animals, cultural norms, or linguistic conventions, and about how

these systems evolve into evolutionary stable structures within a Darwinian con-

cept of adaptability. The classical topic of choice, preference, and utility mod-

els is taken on in Chapter 7, by Anthony A. J. Marley and Michel Regenwetter.

The chapter focuses primarily on probabilistic models, treating deterministic rep-

resentations as their special case. Chapter 8, by William Batchelder, deals with

another classical topic, that of modeling cognitive processes by discrete state mod-

els representable as a special class of parameterized full binary trees. Such mod-

els range from discrete state models of signal detection to Markov chain models

of learning and memory to the large class of multinomial processing tree (MPT)

models.

The last two chapters of the handbook deal primarily with the relation between

psychological models and empirical data. They can therefore be classed into the

category of “analytic methodology.” Chapter 9, by Jeffrey Rouder, Richard Morey,

and Michael Pratte, deals with data structures where several participants each give

responses to several classes of similar experimental items. The chapter describes

how Bayesian hierarchical models can specify both subject and item parameter

distributions. In Chapter 10, Jay Myung, Daniel Cavagnaro, and Mark Pitt discuss

statistical techniques, both Bayesian and frequentist, of evaluating and comparing

parametric probabilistic models applied to a given body of data, as well as ways to

optimally select a sequence of experimental conditions in data gathering to maxi-

mally differentiate the competing models.

There is no particular order in which the chapters in the NHMP should be read:

they are independent of each other. We strived to ensure that each chapter is self-

contained, requiring no prior knowledge of the material except for a certain level

of mathematical maturity (ability to read mathematics) and some knowledge of

basic mathematics. The latter includes calculus, elementary probability theory, and

elementary set theory, say, within the scope of one- or two-semester introductory

courses at mathematics departments. The intended readership of the handbook are

behavioral and social scientists, mathematicians, computer scientists, and analytic

philosophers – ranging from graduate students, or even advanced undergraduates,

to experts in one of these fields.

www.cambridge.org/9781107029088
www.cambridge.org


Cambridge University Press
978-1-107-02908-8 — New Handbook of Mathematical Psychology
Edited by William H. Batchelder , Hans Colonius , Ehtibar N. Dzhafarov , Jay Myung 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface xvii

References

Aczél, J. (1966). Lectures on Functional Equations and Their Applications. (Mathematics

in Science and Engineering 19.) New York, NY: Academic Press.

Alper, T. M. (1987). A classification of all order-preserving homeomorphism groups of

the real that satisfy finite uniqueness. Journal of Mathematical Psychology, 31:

135–154.

Blackwell, H. R. (1953). Psychological Thresholds: Experimental Studies of Methods of
Measurement (Bulletin No. 36). Ann Arbor, MJ: University of Michigan, Engi-

neering Research Institute.

Cauchy, A.-L. (1821). Cours d’analyse de l’École royale polytechnique. Paris: Imprimerie

royale.

Dzhafarov, E. N., and Colonius, H. (2012). The Fechnerian idea. American Journal of Psy-
chology, 124: 127–140.

Fechner, G. T. (1860). Elemente der Psychophysik. Leipzig: Breitkopf & Härtel.

Fishburn, P. (1973). Interval representations for interval orders and semiorders. Journal of
Mathematical Psychology, 10; 91–105.

Fishburn, P., and Monjardet, B. (1992). Norbert Wiener on the theory of measurement

(1914, 1915, 1921). Journal of Mathematical Psychology, 36; 165–184.

Luce, R. D. (1956). Semiorders and a theory of utility discrinlination. Econometrica, 24:

178–191.

Luce, R. D. Bush, R. R. and Galanter, E. (1963a). Handbook of Mathematical Psychology,

vol. 1. New York, NY: Wiley.

Luce, R. D. Bush, R. R. and Galanter, E. (1963b). Handbook of Mathematical Psychology,

vol. 2. New York, NY: Wiley.

Luce, R. D. Bush, R. R. and Galanter, E. (1965). Handbook of Mathematical Psychology,

vol. 3. New York, NY: Wiley.

Narens, L. (1985). Abstract Measurement Theory. Cambridge, MA: MIT University Press.

Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copen-

hagen: Paedagogike Institut.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103; 677–680

Thurstone, L. L. (1927). Psychophysical analysis. American Journal of Psychology, 38;

368–389.

www.cambridge.org/9781107029088
www.cambridge.org

