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1.1 Introduction

1.1.1 Goal of this chapter

Since the early beginnings of mathematical psychology, concepts from probability

theory have always played a major role in developing and testing formal models of

behavior and in providing tools for data-analytic methods. Moreover, fundamen-

tal measurement theory, an area where such concepts have not been mainstream,

has been diagnosed as wanting of a sound probabilistic base by founders of the

field (see Luce, 1997). This chapter is neither a treatise on the role of probability

in mathematical psychology nor does it give an overview of its most successful

applications. The goal is to present, in a coherent fashion, a number of probabilis-

tic concepts that, in my view, have not always found appropriate consideration in

mathematical psychology. Most of these concepts have been around in mathemat-

ics for several decades, like coupling, order statistics, records, and copulas; some

of them, like the latter, have seen a surge of interest in recent years, with copula

theory providing a new means of modeling dependence in high-dimensional data
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(see Joe, 2015). A brief description of the different concepts and their interrelations

follows in the second part of this introduction.

The following three examples illustrate the type of concepts addressed in this

chapter. It is no coincidence that they all relate, in different ways, to the mea-

surement of reaction time (RT), which may be considered a prototypical example

of a random variable in the field. Since the time of Dutch physiologist Francis-

cus C. Donders (Donders, 1868/1969), mathematical psychologists have developed

increasingly sophisticated models and methods for the analysis of RTs.1 Neverthe-

less, the probabilistic concepts selected for this chapter are, in principle, applicable

in any context where some form of randomness has been defined.

Example 1.1 (Random variables vs. distribution functions) Assume that the time

to respond to a stimulus depends on the attentional state of the individual; the

response may be the realization of a random variable with distribution function

FH in the high-attention state and FL in the low-attention state. The distribution of

observed RTs could then be modeled as a mixture distribution,

F (t ) = pFH (t ) + (1 − p)FL(t ),

for all t ≥ 0 with 0 ≤ p ≤ 1 the probability of responding in a state of high

attention.

Alternatively, models of RT are often defined directly in terms of operations

on random variables. Consider, for example, Donders’ method of subtraction in

the detection task; if two experimental conditions differ by an additional decision

stage, D, total response time may be conceived of as the sum of two random vari-

ables, D + R, where R is the time for responding to a high-intensity stimulus.

In the case of a mixture distribution, one may wonder whether it might also be

possible to represent the observed RTs as the sum of two random variables H and

L, say, or, more generally, if the observed RTs follow the distribution function of

some Z(H, L), where Z is a measurable two-place function of H and L. In fact,

the answer is negative and follows as a classic result from the theory of copulas

(Nelsen, 2006), to be treated later in this chapter.

Example 1.2 (Coupling for audiovisual interaction) In a classic study of inter-

sensory facilitation, Hershenson (1962) compared reaction time to a moderately

intense visual or acoustic stimulus to the RT when both stimuli were presented

more or less simultaneously. Mean RT of a well-practiced subject to the sound

(RTA, say) was approximately 120 ms, mean RT to the light (RTV ) about 160 ms.

When both stimuli were presented synchronously, mean RT was still about 120 ms.

Hershenson reasoned that intersensory facilitation could only occur if the “neural

events” triggered by the visual and acoustic stimuli occurred simultaneously some-

where in the processing. That is, “physiological synchrony,” rather than “physical

(stimulus) synchrony” was required. Thus, he presented bimodal stimuli with light

leading sound giving the slower system a kind of “head start.” In the absence of

1 For monographs, see Townsend and Ashby (1983), Luce (1986), Schweickert et al. (2012).
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Figure 1.1 Bimodal (mean) reaction time to light and sound with

interstimulus interval (ISI) and sound following light, RTV = 160 ms,

RTA = 120 ms. Upper graph: prediction in absence of interaction, lower

graph: observed mean RTs; data from Diederich and Colonius (1987).

interaction, reaction time to the bimodal stimulus with presentation of the acoustic

delayed by τ ms, denoted as RTV τA, is expected to increase linearly until the sound

is delivered 40 ms after the light (the upper graph in Figure 1.1). Actual results,

however, looked more like the lower graph in Figure 1.1, where maximal facili-

tation occurs at about physiological synchrony. Raab (1962) suggested an expla-

nation in terms of a probability summation (or, race) mechanism: response time

to the bimodal stimulus, RTV τA, is considered to be the winner of a race between

the processing times for the unimodal stimuli, i.e., RTV τA ≡ min{RTV , RTA + τ }. It

then follows for the expected values (mean RTs):

E[RTV τA] = E[min{RTV , RTA + τ }] ≤ min{E[RTV ], E[RTA + τ ]},

a prediction that is consistent with the observed facilitation. It has later been shown

that this prediction is not sufficient for explaining the observed amount of facilita-

tion, and the discussion of how the effect should be modeled is ongoing, attracting

a lot of attention in both psychology and neuroscience.

However, as already observed by Luce (1986, p. 130), the above inequality only

makes sense if one adds the assumption that the three random variables RTV τA,

RTV , and RTA are jointly distributed. The existence of a joint distribution is not

automatic because each variable relates to a different underlying probability space

defined by the experimental condition: visual, auditory, or bimodal stimulus pre-

sentation. From the theory of coupling (Thorisson, 2000), constructing such a joint

distribution is always possible by assuming stochastic independence of the random

variables. However – and this is the main point of this example – independence is

not the only coupling possibility, and alternative assumptions yielding distributions
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Figure 1.2 Inverse gaussian (dashed line) and gamma densities with identical

mean (60 ms) and standard deviation (35 ms).

with certain dependency properties may be more appropriate to describe empirical

data.

Example 1.3 (Characterizing RT distributions: hazard function) Sometimes, a

stochastic model can be shown to predict a specific parametric distribution, e.g.,

drawing on some asymptotic limit argument (central limit theorem or convergence

to extreme-value distributions). It is often notoriously difficult to tell apart two den-

sities when only a histogram estimate from a finite sample is available. Figure 1.2

provides an example of two theoretically important distributions, the gamma and

the inverse gaussian densities with identical means and standard deviations, where

the rather similar shapes make it difficult to distinguish them on the basis of a

histogram.

An alternative, but equivalent, representation of these distributions is terms of

their hazard functions (see Section 1.10). The hazard function hX of random vari-

able X with distribution function FX (x) and density fX (x) is defined as

hX (x) =
fX (x)

1 − FX (x)
.

As Figure 1.3 illustrates, the gamma hazard function is increasing with decreas-

ing slope, whereas the inverse gaussian is first increasing and then decreasing.

Although estimating hazard functions also has its intricacies (Kalbfleisch and

Prentice, 2002), especially at the right tail, there is a better chance to tell the

distributions apart based on estimates of the hazard function than on the density

or distribution function. Still other methods to distinguish classes of distribution

functions are based on the concept of quantile function (see Section 1.3.2),

among them the method of delta plots, which has recently drawn the attention of

researchers in RT modeling (Schwarz and Miller, 2012). Moreover, an underlying

theme of this chapter is to provide tools for a model builder that do not depend on

committing oneself to a particular parametric distribution assumption.
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Figure 1.3 Hazard functions of the inverse gaussian (dashed line) and gamma

distributions corresponding to the densities of Figure 1.2.

We hope to convey in this chapter that even seemingly simple situations, like

the one described in Example 1.2, may require some careful consideration of the

underlying probabilistic concepts.

1.1.2 Overview

In trying to keep the chapter somewhat self-contained, the first part presents

basic concepts of probability and stochastic processes, including some elemen-

tary notions of measure theory. Because of space limitations, some relevant topics

had to be omitted (e.g., random walks, Markov chains), or are only mentioned in

passing (e.g., martingale theory). For the same reason, statistical aspects are con-

sidered only when suggested by the context.2 Choosing what material to cover was

guided by the specific requirements of the topics in the second, main part of the

chapter.

The second part begins with a brief introduction to the notion of exchangeability

(with a reference to an application in vision) and its role in the celebrated “theorem

of de Finetti.” An up-to-date presentation of quantile (density) functions follows,

a notion that emerges in many areas including survival analysis. The latter topic,

while central to RT analysis, has also found applications in diverse areas, like deci-

sion making and memory, and is treated next at some length, covering an important

non-identifiability result. Next follow three related topics: order statistics, extreme

values, and the theory of records. Whereas the first and, to a lesser degree, the

second of these topics have become frequent tools in modeling psychological pro-

cesses, the third has not yet found the role that it arguably deserves.

The method of coupling, briefly mentioned in introductory Example 1.2, is

a classic tool of probability theory concerned with the construction of a joint

2 For statistical issues of reaction time analysis, see the competent treatments by Van Zandt (2000,
2002); and Ulrich and Miller (1994), for discussing effects of truncation.
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probability space for previously unrelated random variables (or, more general

random entities). Although it is used in many parts of probability, e.g., Poisson

approximation, and in simulation, there are not many systematic treatises of

coupling and it is not even mentioned in many standard monographs of probability

theory. We can only present the theory at a very introductory level here, but

the expectation is that coupling will have to play an important conceptual role

in psychological theorizing. For example, its relevance in defining “selective

influence/contextuality” has been demonstrated in the work by Dzhafarov and

Kujala (see also Chapter 2 by Dzhafarov and Kujala in this volume).

While coupling strives to construct a joint probability space, the existence of

a multivariate distribution is presumed in the next two sections. Fréchet classes

are multivariate distributions that have certain of their marginal distributions fixed.

The issues are (i) to characterize upper and lower bounds for all elements of a

given class, and (ii) to determine conditions under which (bivariate or higher) mar-

gins with overlapping indices are compatible. Copula theory allows one to separate

the dependency structure of a multivariate distribution from the specific univari-

ate margins. This topic is pursued in the subsequent section presenting a brief

overview of different types of multivariate dependence. Comparing uni- and multi-

variate distribution functions with respect to location and/or variability is the topic

of the final section, stochastic orders.

A few examples of applications of these concepts to issues in mathematical psy-

chology are interspersed in the main text. Moreover, the comments and reference

section at the end gives a number of references to further pertinent applications.

1.2 Basics

Readers familiar with basic concepts of probability and stochastic pro-

cesses, including some measure-theoretic terminology, may skip this first section

of the chapter.

1.2.1 σ -Algebra, probability space, independence, random variable,

and distribution function

A fundamental assumption of practically all models and methods of response time

analysis is that the response latency measured in a given trial of a reaction time

task is the realization of a random variable. In order to discuss the consequences

of treating response time as a random variable or, more generally, as a function of

several random variables, some standard concepts of probability theory will first

be introduced.3

3 Limits of space do not permit a completely systematic development here, so only a few of the most
relevant topics will be covered in detail. For a more comprehensive treatment see the references in
the final section (and Chapter 2 for a more general approach).
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Let � be an arbitrary set, often referred to as the sample space or set of elemen-

tary outcomes of a random experiment, and F a system of subsets of � endowed

with the properties of a σ -algebra (of events), i.e.,

(i) ∅ ∈ F ( “impossible” event ∅).

(ii) If A ∈ F then also its complement: Ac ∈ F .

(iii) For a sequence of events {An ∈ F}n≥1, then also
⋃∞

n=1 An ∈ F .

The pair (�,F ) is called measurable space. Let A be any collection of subsets

of �. Because the power set, P(�), is a σ -algebra, it follows that there exists at

least one σ -algebra containing A. Moreover, the intersection of any number of

σ -algebras is again a σ -algebra. Thus, there exists a unique smallest σ -algebra

containing A, defined as the intersection of all σ -algebras containing A, called the

σ -algebra generated by A and denoted as S (A).

Definition 1.1 (Probability space) The triple (�,F, P) is a probability space

if � is a sample space with σ -algebra F such that P satisfies the following

(Kolmogorov) axioms:

(1) For any A ∈ F , there exists a number P(A) ≥ 0; the probability of A.

(2) P(�) = 1.

(3) For any sequence of mutually disjoint events {An, n ≥ 1},

P

(

∞
⋃

n=1

An

)

=

∞
∑

n=1

P(An).

Then P is called the probability measure, the elements of F are the measurable

subsets of �, and the probability space (�,F, P) is an example of measure spaces

which may have measures other than P. Some easy to show consequences of the

three axioms are, for measurable sets A, A1, A2,

1. P(Ac) = 1 − P(A);

2. P(∅) = 0;

3. P(A1 ∪ A2) ≤ P(A1) + P(A2);

4. A1 ⊂ A2 → P(A1) ≤ P(A2).

A set A ⊂ � is called a null set if there exists B ∈ F , such that B ⊃ A with P(B) =

0. In general, null sets need not be measurable. If they are, the probability space

(�,F, P) is called complete.4 A property that holds everywhere except for those

ω in a null set is said to hold (P-)almost everywhere (a.e.).

Definition 1.2 (Independence) The events {Ak, 1 ≤ k ≤ n} are independent if,

and only if,

P
(

⋂

Aik

)

=
∏

P(Aik ),

4 Any given σ -algebra can be enlarged and the probability measure can be uniquely extended to
yield a complete probability space, so it will be assumed in the following without further explicit
mentioning that a given probability space is complete.
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where intersections and products, respectively, are to be taken over all subsets of

{1, 2, . . . , n}. The events {An, n ≥ 1} are independent if {Ak, 1 ≤ k ≤ n} are inde-

pendent for all n.

Definition 1.3 (Conditional probability) Let A and B be two events and suppose

that P(A) > 0. The conditional probability of B given A is defined as

P(B|A) =
P(A ∩ B)

P(A)
.

Remark 1.1 If A and B are independent, then P(B|A) = P(B). Moreover, P(·|A)

with P(A) > 0 is a probability measure. Because 0 ≤ P(A ∩ B) ≤ P(A) = 0, null

sets are independent of “everything.”

The following statements about any subsets (events) of �, {Ak, 1 ≤ k ≤ n}, turn

out to be very useful in many applications in response time analysis and are listed

here for later reference.

Remark 1.2 (Inclusion–exclusion formula)

P

(

n
⋃

k=1

Ak

)

=

n
∑

k=1

P(Ak ) −
∑

1≤i≤ j≤n

P(Ai ∩ A j )

+
∑

1≤i< j<k≤n

P(Ai ∩ A j ∩ Ak )

+ · · · − (−1)nP(A1 ∩ A2 ∩ · · · ∩ An).

If the events are independent, this reduces to

P

(

n
⋃

k=1

Ak

)

= 1 −

n
∏

k=1

(1 − P(Ak )).

Definition 1.4 (Measurable function) Let (�,F ) and (�′,F ′) be measure spaces

and T : � → �′ a mapping from � to �′. T is called F-F ′-measurable if

T −1(A′) ∈ F for all A′ ∈ F ′,

where

T −1(A′) = {ω ∈ � | T (ω) ∈ A′}

is called the inverse image of A′.

For the introduction of (real-valued) random variables, we need a special σ -

algebra. Let � = ℜ, the set of real numbers. The σ -algebra of Borel sets, denoted

as B(ℜ) ≡ B, is the σ -algebra generated by the set of open intervals5 of ℜ. Impor-

tantly, two probability measures P and Q on (ℜ,B) that agree on all open intervals

are identical, P = Q.

5 It can be shown that B can equivalently be generated by the sets of closed or half-open intervals of
real numbers. In the latter case, this involves extending B to a σ -algebra generated by the extended
real line, ℜ ∪ {+∞} ∪ {−∞}.
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Definition 1.5 (Random variable) Let (�,F, P) be a probability space. A (real-

valued) random variable X is a F-B-measurable function from the sample space

� to ℜ; that is, the inverse image of any Borel set A is F-measurable:

X −1(A) = {ω | X (ω) ∈ A} ∈ F, for all A ∈ B.

If X : � → [−∞, +∞], we call X an extended random variable.

Random variables that differ only on a null set are called equivalent and for two

random variables X and Y from the same equivalence class we write X ∼ Y .

To each random variable X we associate an induced probability measure, Pr,

through the relation

Pr(A) = P(X −1(A)) = P({ω | X (ω) ∈ A}), for all A ∈ B.

The induced space (ℜ,B, Pr) can be shown to be a probability space by simply

checking the above (Kolmogorov) axioms. Pr is also called the distribution of X .

Remark 1.3 Most often one is only interested in the random variables and “for-

gets” the exact probability space behind them. Then no distinction is made between

the probability measures P and Pr, one omits the brackets { and } emphasizing that

{X ∈ A} actually is a set, and simply writes P(X ∈ A), or PX (A), instead of Pr(A).

However, sometimes it is important to realize that two random variables are

actually defined with respect to two different probability spaces. A case in point

is our introductory Example 1.2, where the random variable representing reaction

time to a visual stimulus and the one representing reaction time to the acoustic

stimulus are not a-priori defined with respect to the same probability space. In such

a case, for example, it is meaningless to ask whether two events are independent

(see Section 1.3.5).

“The equality” of random variables can be interpreted in different ways.

Remark 1.4 Random variables X and Y are equal in distribution iff they are

governed by the same probability measure:

X = d Y ⇐⇒ P(X ∈ A) = P(Y ∈ A), for all A ∈ B.

X and Y are point-wise equal iff they agree for almost all elementary events6:

X
a.s.
= Y ⇐⇒ P({ω | X (ω) = Y (ω)}) = 1,

i.e., iff X and Y are equivalent random variables, X ∼ Y .

The following examples illustrate that two random variables may be equal in

distribution, and at the same time there is no elementary event where they agree.

Example 1.4 (Gut, 2013, p. 27) Toss a fair coin once and set

X =

{

1, if the outcome is heads,

0, if the outcome is tails,
and Y =

{

1, if the outcome is tails,

0, if the outcome is heads.

6 Here, a.s. is for “almost sure”.
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