Lectures on Quantum Mechanics

Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a concise introduction to modern quantum mechanics.

Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach. The textbook covers many topics not often found in other books on the subject, including alternatives to the Copenhagen interpretation, Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, the Dirac theory of constrained canonical systems, general scattering theory, the optical theorem, the "in-in" formalism, the Berry phase, Landau levels, entanglement, and quantum computing. Problems are included at the ends of chapters, with solutions available for instructors at www.cambridge.org/LQM.

STEVEN WEINBERG is a member of the Physics and Astronomy Departments at the University of Texas at Austin. His research has covered a broad range of topics in quantum field theory, elementary particle physics, and cosmology, and he has been honored with numerous awards, including the Nobel Prize in Physics, the National Medal of Science, and the Heinemann Prize in Mathematical Physics. He is a member of the US National Academy of Sciences, Britain's Royal Society, and other academies in the USA and abroad. The American Philosophical Society awarded him the Benjamin Franklin medal, with a citation that said he is "considered by many to be the preeminent theoretical physicist alive in the world today." His books for physicists include *Gravitation and Cosmology*, the three-volume work *The Quantum Theory of Fields*, and most recently, *Cosmology*. Educated at Cornell, Copenhagen, and Princeton, he also holds honorary degrees from sixteen other universities. He taught at Columbia, Berkeley, M.I.T., and Harvard, where he was Higgins Professor of Physics, before coming to Texas in 1982.

Lectures on Quantum Mechanics

Steven Weinberg The University of Texas at Austin

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781107028722

© S. Weinberg 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data Weinberg, Steven, 1933– Lectures on quantum mechanics / Steven Weinberg. p. cm. ISBN 978-1-107-02872-2 (hardback) 1. Quantum theory. I. Title. QC174.125.W45 2012 530.12–dc23 2012030441

ISBN 978-1-107-02872-2 Hardback

Additional resources for this publication at www.cambridge.org/9781107028722

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Louise, Elizabeth, and Gabrielle

Contents

PREFACE	<i>page</i> xv
NOTATION	xviii
1 HISTORICAL INTRODUCTION	1
1.1 Photons	1
Black-body radiation Rayleigh–Jeans formula Planck formula Photoelectric effect Compton scattering	Atomic constants
1.2 Atomic Spectra	5
Discovery of atomic nuclei \Box Ritz combination principle \Box Bohr quat \Box Hydrogen spectrum \Box Atomic numbers \Box Sommerfeld quantiz Einstein <i>A</i> and <i>B</i> coefficients	ntization condition \Box
1.3 Wave Mechanics	11
De Broglie waves Davisson–Germer experiment equation	□ Schrödinger
1.4 Matrix Mechanics	14
Radiative transition rate \Box Harmonic oscillator \Box Heisenberg Commutation relations \Box Equivalence to wave mechanics	matrix algebra 🗆
1.5 Probabilistic Interpretation	21
Scattering \Box Probability density \Box Expectation values \Box Classical n for transition probabilities	notion \Box Born rule
Historical Bibliography	27
Problems	27

viii Contents	
2 PARTICLE STATES IN A CENTRAL POTENTIAL 29	
2.1 Schrödinger Equation for a Central Potential 29	
Hamiltonian for central potentials \Box Orbital angular momentum operators \Box Spectrum of $L^2 \Box$ Separation of wave function \Box Boundary conditions	
2.2 Spherical Harmonics 36	
Spectrum of L_3 \Box Associated Legendre polynomials \Box Construction of spherical harmonics \Box Orthonormality \Box Parity	
2.3 The Hydrogen Atom 39	
Radial Schrödinger equation \Box Power series solution \Box Laguerre polynomials \Box Energy levels \Box Selection rules	
2.4 The Two-Body Problem 44	
Reduced mass Relative and center-of-mass coordinates Relative and total momenta Hydrogen and deuterium spectra	
2.5 The Harmonic Oscillator 45	
Separation of wave function \square Raising and lowering operators \square Spectrum \square Normalized wave functions \square Radiative transition matrix elements	
Problems 50	
3 GENERAL PRINCIPLES OF QUANTUM MECHANICS 52	
3.1 States 52	
Hilbert space \Box Vector spaces \Box Norms \Box Completeness and independence \Box Orthonormalization \Box Probabilities \Box Rays \Box Dirac notation	
3.2 Continuum States 58	
From discrete to continuum states \Box Normalization \Box Delta functions \Box Distributions	
3.3 Observables 61	
Operators □ Adjoints □ Matrix representation □ Eigenvalues □ Complete- ness of eigenvectors □ Schwarz inequality □ Uncertainty principle □ Dyads □ Projection operators □ Density matrix □ von Neumann entropy	
3.4 Symmetries 69	
Unitary operators \Box Wigner's theorem \Box Antiunitary operators \Box Continuous symmetries \Box Commutators	
3.5 Space Translation 73	
Momentum operators \Box Commutation rules \Box Momentum eigenstates \Box Bloch waves \Box Band structure	

Contents	ix
3.6 Time Translation	77
Hamiltonians Time-dependent Schrödinger equation Conservation la reversal Galilean invariance Boost generator	ws 🗆 Time
3.7 Interpretations of Quantum Mechanics	81
Copenhagen interpretation \Box Two classes of interpretation \Box Many-worlds tions \Box Examples of measurement \Box Decoherence \Box Calculation of probabandoning realism \Box Decoherent histories interpretation	s interpreta- babilities □
Problems	96
4 SPIN ET CETERA	97
4.1 Rotations	99
Finite rotations \Box Action on physical states \Box Infinitesimal rotations \Box Corelations \Box Total angular momentum \Box Spin	ommutation
4.2 Angular Momentum Multiplets	104
Raising and lowering operators \Box Spectrum of \mathbf{J}^2 and $J_3 \Box$ Spin matrice matrices $\Box J_3$ -independence \Box Stern–Gerlach experiment	ces □ Pauli
4.3 Addition of Angular Momenta	109
Choice of basis \Box Clebsch–Gordan coefficients \Box Sum rules \Box Hydrog $SU(2)$ formalism	en states □
4.4 The Wigner–Eckart Theorem	118
Operator transformation properties \Box Theorem for matrix elements \Box Par elements \Box Photon emission selection rules	allel matrix
4.5 Bosons and Fermions	121
Symmetrical and antisymmetrical states \Box Connection with spin \Box Hartr mation \Box Pauli exclusion principle \Box Periodic table for atoms \Box Magic r nuclei \Box Temperature and chemical potential \Box Statistics \Box Insulators, semi-conductors	ee approxi- numbers for conductors,
4.6 Internal Symmetries	131
Charge symmetry \Box Isotopic spin symmetry \Box Pions $\Box \Delta s \Box$ Strangene symmetries $\Box SU(3)$ symmetry	ess $\Box U(1)$
4.7 Inversions	138
Space Inversion \Box Orbital parity \Box Intrinsic parity \Box Parity of pions \Box V parity conservation \Box P, C, and T	iolations of
4.8 Algebraic Derivation of the Hydrogen Spectrum	142
Runge–Lenz vector \Box $SO(3) \otimes SO(3)$ commutation relations \Box Energy Scattering states	gy levels □
Problems	146

Х	Contents	
5	APPROXIMATIONS FOR ENERGY EIGENVALUES	148
5.1 Energy analog	First-Order Perturbation Theory y shift \Box Dealing with degeneracy \Box State vector perturbation \Box A class	148 ical
5.2 Gyrom Zeema	The Zeeman Effect nagnetic ratio \Box Landé g-factor \Box Sodium <i>D</i> lines \Box Normal and anomal in effect \Box Paschen–Back effect	152 ous
5.3 Mixing strong	The First-Order Stark Effect g of $2s_{1/2}$ and $2p_{1/2}$ states \Box Energy shift for weak fields \Box Energy shift fields	157 for
5.4 Energy Second	Second-Order Perturbation Theory y shift Ultraviolet and infrared divergences Closure approximation d-order Stark effect	160
5.5 Upper □ Othe	The Variational Method bound on ground state energy Approximation to state vectors Virial theorem states	162 rem
5.6 Reduce Electro	The Born–Oppenheimer Approximation ed Hamiltonian Hellmann–Feynman theorem Estimate of corrections onic, vibrational, and rotational modes Effective theories	165 ₃□
5.7 Approprior	The WKB Approximation ximate solutions Validity conditions Turning points Energy eigenvalues mension Energy eigenvalues – three dimensions	171 28 –
5.8 Approxitions	Broken Symmetry ximate solutions for thick barriers Energy splitting Decoherence Osci Chiral molecules	179 11a-
Proble	Problems 181	
6	APPROXIMATIONS FOR TIME-DEPENDENT PROBLEMS	183
6.1 Differe	First-Order Perturbation Theory ential equation for amplitudes Approximate solution	183
6.2 Transit	Monochromatic Perturbations tion rate \Box Fermi golden rule \Box Continuum final states	184
6.3 Nature state	Ionization by an Electromagnetic Wave of perturbation Conditions on frequency Ionization rate of hydrogen grou	187 und

Contents	xi
6.4 Fluctuating Perturbations	189
Stationary fluctuations \Box Correlation function \Box Transition rate	
 6.5 Absorption and Stimulated Emission of Radiation Dipole approximation Transition rates Energy density of radiation Spontaneous transition rate 	191] <i>B</i> -coefficients
6.6 The Adiabatic Approximation	193
Slowly varying Hamiltonians Dynamical phase Non-dynamical pha ate case	ase 🗆 Degener-
6.7 The Berry Phase	196
Geometric character of the non-dynamical phase \Box Closed curves in p \Box General formula for the Berry phase \Box Spin in a slowly varying magn	arameter space netic field
Problems	202
7 POTENTIAL SCATTERING	203
7.1 In-States	203
Wave packets \Box Lippmann–Schwinger equation \Box Wave packets at Spread of wave packet	early times \Box
7.2 Scattering Amplitudes	208
Green's function for scattering \Box Definition of scattering amplitude \Box late times \Box Differential cross-section	Wave packet at
7.3 The Optical Theorem	211
Derivation of theorem \Box Conservation of probability \Box Diffraction peak	ζ
7.4 The Born Approximation	214
First-order scattering amplitude \Box Scattering by shielded Coulomb pote	ntial
7.5 Phase Shifts	216
Partial wave expansion of plane wave \Box Partial wave expansion of "in" w Partial wave expansion of scattering amplitude \Box Scattering cross-section length and effective range	vave function \Box on \Box Scattering
7.6 Resonances	220
Thick barriers \Box Breit–Wigner formula \Box Decay rate \Box Alpha decay Townsend effect	🗆 Ramsauer–
7.7 Time Delay	224
Wigner formula Causality	
7.8 Levinson's Theorem	226
Conservation of discrete states Growth of phase shift	

xii Contents	
7.9 Coulomb Scattering Separation of wave function \Box Kummer functions \Box Scattering amplitude	227
 7.10 The Eikonal Approximation WKB approximation in three dimensions □ Initial surface □ Ray paths □ Calc of phase □ Calculation of amplitude □ Application to potential scattering 	229 ulation
Problems	234
8 GENERAL SCATTERING THEORY	235
8.1 The S-Matrix "In" and "out " states □ Wave packets at early and late times □ Definition S-Matrix □ Normalization of the "in" and "out" states □ Unitarity of the S-matrix	235 of the rix
8.2 Rates Transition probabilities in a spacetime box □ Decay rates □ Cross-sections □ R velocity □ Connection with scattering amplitudes □ Final states	240 Relative
8.3 The General Optical Theorem Optical theorem for multi-particle states Two-particle case	244
8.4 The Partial Wave Expansion Discrete basis for two-particle states □ Two-particle S-matrix □ Total and sca cross-sections □ Phase shifts □ High-energy scattering	245 attering
 8.5 Resonances Revisited S-matrix near a resonance energy □ Consequences of unitarity □ General Breit-Y formula □ Total and scattering cross-sections □ Branching ratios 	252 Wigner
8.6 Old-Fashioned Perturbation Theory Perturbation series for the S-matrix Functional analysis Square-integrable kee Sufficient conditions for convergence Upper bound on binding energies Division binding energies Division Divisi	256 ernel □ storted
8.7 Time-Dependent Perturbation Theory Time-development operator Interaction picture Time-ordered products perturbation series Lorentz invariance "In-in" formalism	262 Dyson
8.8 Shallow Bound States Low equation \Box Low-energy approximation \Box Solution for scattering len Neutron–proton scattering \Box Solution using Herglotz theorem	267 ngth □
Problems	273

Contents	xiii
9 THE CANONICAL FORMALISM	275
9.1 The Lagrangian Formalism	276
Stationary action \Box Lagrangian equations of motion	\square Example: spherical coordinates
9.2 Symmetry Principles and Conservation L	aws 278
Noether's theorem \Box Conserved quantities from s translation \Box Rotations \Box Symmetries of action	ymmetries of Lagrangian □ Space
9.3 The Hamiltonian Formalism	279
Time translation and Hamiltonian \Box Hamiltonian coordinates again	equations of motion \Box Spherical
9.4 Canonical Commutation Relations	281
Conserved quantities as symmetry generators \Box C and conjugates \Box Momentum and angular momenidentity	ommutators of canonical variables ntum Poisson brackets Jacobi
9.5 Constrained Hamiltonian Systems	285
Example: particle on a surface \Box Primary and s second-class constraints \Box Dirac brackets	econdary constraints \Box First- and
9.6 The Path-Integral Formalism	290
Derivation of the general path integral □ Integratin □ Two-slit experiment □ Interactions	g out momenta 🗆 The free particle
Problems	296
10 CHARGED PARTICLES IN ELECTRO	MAGNETIC FIELDS 298
10.1 Canonical Formalism for Charged Partic	les 298
Equations of motion \Box Scalar and vector potential Commutation relations	ls 🗆 Lagrangian 🗆 Hamiltonian 🗆
10.2 Gauge Invariance	300
Gauge transformations of potentials \Box Gauge transformation of Hamiltonian \Box Gauge transformation of energy eigenvalues	formation of Lagrangian □ Gauge rmation of state vector □ Gauge
10.3 Landau Energy Levels	302
Hamiltonian in a uniform magnetic field \Box Energy level \Box Periodicity in $1/B_z \Box$ Shubnikow–de Haas	levels □ Near degeneracy □ Fermi and de Haas–van Alphen effects
10.4 The Aharonov–Bohm Effect	305
Application of the eikonal approximation \Box Interference Relation to Berry phase \Box Effect of field-free vector	Therefore the second s
Problems	307

xiv	Contents	
11	THE QUANTUM THEORY OF RADIATION	309
11.1	The Euler–Lagrange Equations	309
Gener	al field theories \Box Variational derivatives of Lagrangian \Box Lagrangian densi	ty
11.2	The Lagrangian for Electrodynamics	311
Maxw matter	vell equations \Box Charge density and current density \Box Field, interaction, r Lagrangians	and
11.3	Commutation Relations for Electrodynamics	313
Coulo	omb gauge Constraints Applying Dirac brackets	
11.4	The Hamiltonian for Electrodynamics	316
Evalua	ation of Hamiltonian \Box Coulomb energy \Box Recovery of Maxwell's equation	s
11.5	Interaction Picture	318
Intera	ction picture operators \Box Expansion in plane waves \Box Polarization vectors \Box	
11.6	Photons	322
Creati	ton and annihilation operators \Box Fock space \Box Photon energies \Box Vacuum en oton momentum \Box Photon spin \Box Varieties of polarization \Box Coherent states	ergy
11.7	Radiative Transition Rates	327
S-matrix for photon emission \Box Separation of center-of-mass motion \Box General decay rate \Box Electric dipole radiation \Box Electric quadrupole and magnetic dipole radiation \Box 21 cm radiation \Box No 0 \rightarrow 0 transitions		
Probl	ems	335
12	ENTANGLEMENT	336
12.1	Paradoxes of Entanglement	336
The Einstein–Podolsky–Rosen paradox \Box The Bohm paradox \Box Instantaneous communication? \Box Entanglement entropy		
12.2	The Bell Inequalities	341
Local Exper	hidden variable theories \Box Two-spin inequality \Box Generalized inequalities imental tests	ty □
12.3	Quantum Computation	346
Qbits forma □ Nec	□ Comparison with classical digital computers □ Computation as unitary to tion □ Fourier transforms □ Gates □ Reading the memory □ No-copying the cessity of entanglement	rans- orem
AUTH	HOR INDEX	350
SUBJ	ECT INDEX	353

Preface

The development of quantum mechanics in the 1920s was the greatest advance in physical science since the work of Isaac Newton. It was not easy; the ideas of quantum mechanics present a profound departure from ordinary human intuition. Quantum mechanics has won acceptance through its success. It is essential to modern atomic, molecular, nuclear, and elementary particle physics, and to a great deal of chemistry and condensed matter physics as well.

There are many fine books on quantum mechanics, including those by Dirac and Schiff from which I learned the subject a long time ago. Still, when I have taught the subject as a one-year graduate course, I found that none of these books quite fit what I wanted to cover. For one thing, I like to give a much greater emphasis than usual to principles of symmetry, including their role in motivating commutation rules. (With this approach the canonical formalism is not needed for most purposes, so a systematic treatment of this formalism is delayed until Chapter 9.) Also, I cover some modern topics that of course could not have been treated in the books of long ago, including numerous examples from elementary particle physics, alternatives to the Copenhagen interpretation, and a brief (very brief) introduction to the theory and experimental tests of entanglement and its application in quantum computation. In addition, I go into some topics that are often omitted in books on quantum mechanics: Bloch waves, time-reversal invariance, the Wigner-Eckart theorem, magic numbers, isotopic spin symmetry, "in" and "out" states, the "in-in" formalism, the Berry phase, Dirac's theory of constrained canonical systems, Levinson's theorem, the general optical theorem, the general theory of resonant scattering, applications of functional analysis, photoionization, Landau levels, multipole radiation, etc.

The chapters of the book are divided into sections, which on average approximately represent a single seventy-five minute lecture. The material of this book just about fits into a one-year course, which means that much else has had to be skipped. Every book on quantum mechanics represents an exercise in selectivity — I can't say that my selections are better than those of other authors, but at least they worked well for me when I taught the course.

There is one topic I was not sorry to skip: the relativistic wave equation of Dirac. It seems to me that the way this is usually presented in books on quantum mechanics is profoundly misleading. Dirac thought that his equation was

CAMBRIDGE

Cambridge University Press 978-1-107-02872-2 - Lectures on Quantum Mechanics Steven Weinberg Frontmatter More information

xvi

Preface

a relativistic generalization of the non-relativistic time-dependent Schrödinger equation that governs the probability amplitude for a point particle in an external electromagnetic field. For some time after, it was considered to be a good thing that Dirac's approach works only for particles of spin one half, in agreement with the known spin of the electron, and that it entails negative energy states, states that when empty can be identified with the electron's antiparticle. Today we know that there are particles like the W^{\pm} that are every bit as elementary as the electron, and that have distinct antiparticles, and yet have spin one, not spin one half. The right way to combine relativity and quantum mechanics is through the quantum theory of fields, in which the Dirac wave function appears as the matrix element of a quantum field between a one-particle state and the vacuum, and not as a probability amplitude.

I have tried in this book to avoid an overlap with the treatment of the quantum theory of fields that I presented in earlier volumes.¹ Aside from the quantization of the electromagnetic field in Chapter 11, the present book does not go into relativistic quantum mechanics. But there are some topics that were included in *The Quantum Theory of Fields* because they generally are not included in courses on quantum mechanics, and I think they should be. These subjects are included here, especially in Chapter 8 on general scattering theory, despite some overlap with my earlier volumes.

The viewpoint of this book is that physical states are represented by vectors in Hilbert space, with the wave functions of Schrödinger just the scalar products of these states with basis states of definite position. This is essentially the approach of Dirac's "transformation theory." I do not use Dirac's bra-ket notation, because for some purposes it is awkward, but in Section 3.1 I explain how it is related to the notation used in this book. In any notation, the Hilbert space approach may seem to the beginner to be rather abstract, so to give the reader a greater sense of the physical significance of this formalism I go back to its historic roots. Chapter 1 is a review of the development of quantum mechanics from the Planck black-body formula to the matrix and wave mechanics of Heisenberg and Schrödinger and Born's probabilistic interpretation. In Chapter 2 the Schrödinger wave equation is used to solve the classic bound-state problems of the hydrogen atom and harmonic oscillator. The Hilbert space formalism is introduced in Chapter 3, and used from then on.

* * *

I am grateful to Raphael Flauger and Joel Meyers, who as graduate students assisted me when I taught courses on quantum mechanics at the University of Texas, and suggested numerous changes and corrections to the lecture notes on

¹ S. Weinberg, *The Quantum Theory of Fields* (Cambridge University Press, Cambridge, 1995; 1996; 2000).

Preface

xvii

which this book is based. I am also indebted to Robert Griffiths, James Hartle, Allan Macdonald, and John Preskill, who gave me advice regarding specific topics. Of course, only I am responsible for errors that may remain in this book. Thanks are also due to Terry Riley and Abel Ephraim for finding countless books and articles, and to Jan Duffy for her helps of many sorts. I am grateful to Lindsay Barnes and Jon Billam of Cambridge University Press for helping to ready this book for publication, and especially to my editor, Simon Capelin, for his encouragement and good advice.

STEVEN WEINBERG

Austin, Texas March 2012

Notation

Latin indices i, j, k, and so on generally run over the three spatial coordinate labels, usually taken as 1, 2, 3.

The summation convention is not used; repeated indices are summed only where explicitly indicated.

Spatial three-vectors are indicated by symbols in boldface. In particular, ∇ is the gradient operator.

 ∇^2 is the Laplacian $\sum_i \partial^2 / \partial x^i \partial x^i$.

The three-dimensional "Levi–Civita tensor" ϵ_{ijk} is defined as the totally antisymmetric quantity with $\epsilon_{123} = +1$. That is,

$$\epsilon_{ijk} \equiv \begin{cases} +1 & ijk = 123, \ 231, \ 312 \\ -1 & ijk = 132, \ 213, \ 321 \\ 0 & \text{otherwise} \end{cases}$$

The Kronecker delta is

$$\delta_{nm} = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases}$$

A hat over any vector indicates the corresponding unit vector: Thus, $\hat{\mathbf{v}} \equiv \mathbf{v}/|\mathbf{v}|$.

A dot over any quantity denotes the time-derivative of that quantity.

The step function $\theta(s)$ has the value +1 for s > 0 and 0 for s < 0.

The complex conjugate, transpose, and Hermitian adjoint of a matrix A are denoted A^* , A^T , and $A^{\dagger} = A^{*T}$, respectively. The Hermitian adjoint of an operator O is denoted O^{\dagger} . + H.c. or + c.c. at the end of an equation indicates the addition of the Hermitian adjoint or complex conjugate of the foregoing terms.

Where it is necessary to distinguish operators and their eigenvalues, upper case letters are used for operators and lower case letters for their eigenvalues. This

xviii

Notation

convention is not always used where the distinction between operators and eigenvalues is obvious from the context.

Factors of the speed of light *c*, the Boltzmann constant k_B , and Planck's constant *h* or $\hbar \equiv h/2\pi$ are shown explicitly.

Unrationalized electrostatic units are used for electromagnetic fields and electric charges and currents, so that e_1e_2/r is the Coulomb potential of a pair of charges e_1 and e_2 separated by a distance r. Throughout, -e is the unrationalized charge of the electron, so that the fine structure constant is $\alpha \equiv e^2/\hbar c \simeq 1/137$.

Numbers in parenthesis at the end of quoted numerical data give the uncertainty in the last digits of the quoted figure. Where not otherwise indicated, experimental data are taken from K. Nakamura *et al.* (Particle Data Group), "Review of Particle Properties," J. Physics G **37**, 075021 (2010).

xix