
1
Historical Introduction

The principles of quantum mechanics are so contrary to ordinary intuition that
they can best be motivated by taking a look at their prehistory. In this chapter
we will consider the problems confronted by physicists in the first years of the
twentieth century that ultimately led to modern quantum mechanics.

1.1 Photons

Physicists in the last decades of the nineteenth century were greatly concerned
to understand the nature of black-body radiation — radiation that had come into
thermal equilibrium with matter at a given temperature T . The energy ρ(ν, T )dν
per volume at frequencies between ν and ν + dν had been measured, chiefly
at the Imperial Physical-Technical Institution in Berlin, and it was known on
thermodynamic grounds that ρ(ν, T ) is a universal function of frequency and
temperature, but how could one calculate this function?

A simple calculation was given in 1900 by John William Strutt (1842–1919),
more usually known as Lord Rayleigh.1 It was familiar that one can think of the
radiation field in a box as a Fourier sum over normal modes. For instance, for a
cubical box of width L , whatever boundary condition is satisfied on one face of
the box must be satisfied on the opposite face, so the phase of the radiation field
must change by an integer multiple of 2π in a distance L . That is, the radiation
field is the sum of terms proportional to exp(iq · x), with

q = 2πn/L , (1.1.1)

where the vector n has integer components. (For instance, to maintain transla-
tional invariance, it is convenient to impose periodic boundary conditions: each
component of the electromagnetic field is assumed to be the same on opposite
faces of the box.) Each normal mode is thus characterized by a triplet of inte-
gers n1, n2, n3 and a polarization state, which can be taken as either left- or

1 J. W. Strutt, Verh. d. deutsch. phys. Ges. 2, 65 (1900).
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2 1 Historical Introduction

right-circular polarization. The wavelength of a normal mode is λ = 2π/|q|, so
its frequency is given by

ν = c

λ
= |q|c

2π
= |n|c

L
. (1.1.2)

Each normal mode occupies a cell of unit volume in the space of the vectors n,
so the number of normal modes N (ν)dν in the range of frequencies between ν
and ν + dν is twice the volume of the corresponding shell in this space:

N (ν)dν = 2 × 4π |n|2 d|n| = 8π(L/c)3ν2dν , (1.1.3)

the extra factor of 2 taking account of the two possible polarizations for each
wave number. Rayleigh noted that in classical statistical mechanics, in any sys-
tem that can be regarded as a collection of harmonic oscillators, the mean energy
of each oscillator Ē(T ) is simply proportional to the temperature, a relation writ-
ten as Ē(T ) = kBT , where kB is a fundamental constant, known as Boltzmann’s
constant. (The derivation is given below.) If this applied to radiation, the energy
density in the radiation between frequencies ν and ν + dν would then be given
by what has come to be called the Rayleigh–Jeans formula

ρ(ν, T )dν = Ē(T ) N (ν) dν

L3
= 8πkBT ν2 dν

c3
. (1.1.4)

(A numerical error in Rayleigh’s derivation was corrected in 1905 by James
Jeans (1877–1946).) The prediction that ρ(ν, T ) is proportional to T ν2 was
actually in agreement with observation for small values of ν/T , but failed badly
for larger values. Indeed, if it held for all frequencies at a given temperature, then
the total energy density

∫
ρ(ν, T ) dν would be infinite. This became known as

the ultraviolet catastrophe.
The correct result was published a little later by Max Planck (1858–1947), in

the same volume of the proceedings of the German Physical Society.2 Planck
noted that the data on black-body radiation could be fit with the formula

ρ(ν, T ) dν = 8πh

c3

ν3 dν

exp(hν/kBT )− 1
, (1.1.5)

where h was a new constant, known ever after as Planck’s constant. Comparison
with observation gave kB ≈ 1.4 × 10−16 erg/K and3 h ≈ 6.6 × 10−27 erg sec.
This formula was just guesswork, but a little later Planck gave a derivation of
the formula4, based on the assumption that the radiation was the same as if
it were in equilibrium with a large number of charged oscillators with different

2 M. Planck, Verh. d. deutsch. phys. Ges. 2, 202 (1900).
3 The modern value is 6.62606891(9) × 10−27 erg sec; see E. R. Williams, R. L. Steiner, D. B. Newell,

P. T. Olson, Phys. Rev. Lett. 81, 2404 (1998).
4 M. Planck, Verh. d. deutsch. phys. Ges. 2, 237 (1900).
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1.1 Photons 3

frequencies, the energy of any oscillator of frequency ν being an integer multiple
of hν. Planck’s derivation is lengthy and not worth repeating here, since its basis
is very different from what soon replaced it.

Planck’s formula agrees with the Rayleigh–Jeans formula (1.1.4) for ν/T �
kB/h, but it gives an energy density that falls off exponentially for ν/T �
kB/h, yielding a finite total energy density

∫ ∞

0
ρ(ν, T ) dν = aBT 4 ., aB ≡ 8π5k4

B
15h3c3

. (1.1.6)

(Using modern values of constants, this gives aB = 7.56577(5) × 10−15

erg cm−3 K −4.) Perhaps the most important immediate consequence of Planck’s
work was to provide long-sought values for atomic constants. The theory of
ideal gases gives the well-known law pV = n RT , where p is the pressure of
a volume V of n moles of gas at temperature T , with the constant R given by
R = kBNA, where NA is Avogadro’s number, the number of molecules in one
mole of gas. Measurements of gas properties had long given values for R, so
with kB known it was possible for Planck to infer a value for NA, the reciprocal
of the mass of a hypothetical atom with unit atomic weight (close to the mass
of a hydrogen atom). This was in good agreement with estimates of NA from
properties of non-ideal gases that depend on number density and not just mass
density, such as viscosity. Knowing the mass of individual atoms, and assuming
that atoms in solids are closely packed so that the mass to volume ratio of an
atom is similar to the measured density of macroscopic solid samples of that
element, one could estimate the sizes of atoms. Similarly, measurements of the
amount of various elements produced by electrolysis had given a value for the
Faraday, F = eNA, where e is the electric charge transferred in producing one
atom of unit valence, so with NA known, e could be calculated. It could be
assumed that e is the charge of the electron, which had been discovered in 1897
by Joseph John Thomson (1856–1940), so this amounted to a measurement of
the charge of the electron, a measurement much more precise than any direct
measurement that could be carried out at the time. Thomson had measured the
ratio of e to the mass of the electron, by observing the bending of cathode rays
in electric and magnetic fields, so this also gave a value for the electron mass.
It is ironic that all this could have been done by Rayleigh before the advent of
the Planck black-body formula, by comparing measured values of ρ(ν, T ) with
the Rayleigh–Jeans formula (1.1.4) at small values of ν/T , where the formula
works, and using the result to find kB — for this, h is not needed.

Planck’s quantization assumption applied to the matter that emits and absorbs
radiation, not to radiation itself. As George Gamow later remarked, Planck
thought that radiation was like butter; butter itself comes in any quantity, but it
can be bought and sold only in multiples of one quarter pound. It was Albert
Einstein (1879–1955) who in 1905 proposed that the energy of radiation of
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4 1 Historical Introduction

frequency ν was itself an integer multiple of hν.5 He used this to predict that
in the photoelectric effect no electrons are emitted when light shines on a metal
surface unless the frequency of the light exceeds a minimum value νmin, where
hνmin is the energy required to remove a single electron from the metal (the
“work function”). The electrons then have energy h(ν − νmin). Experiments6 by
Robert Millikan (1868–1953) in 1914–1916 verified this formula, and gave a
value for h in agreement with that derived from black-body radiation.

The connection between Einstein’s hypothesis and the Planck black-body for-
mula is best explained in a derivation of the black-body formula by Hendrik
Lorentz (1853–1928) in 1910.7 Lorentz made use of the fundamental result of
statistical mechanics due to J. Willard Gibbs (1839–1903),8 that in a system
containing a large number of identical systems in thermal equilibrium at a given
temperature (like light quanta of the same frequency in a black-body cavity),
the probability that one of these systems has an energy E is proportional to
exp(−E/kBT ). If the energies of light quanta were continuously distributed,
this would give a mean energy

Ē =
∫∞

0 exp(−E/kBT ) E d E∫∞
0 exp(−E/kBT ) d E

= kBT ,

the assumption used in deriving the Rayleigh–Jeans formula (1.1.4). But if the
energies are instead integer multiples of hν, then the mean energy is

Ē =
∑∞

n=0 exp(−nhν/kBT ) nhν∑∞
n=0 exp(−nhν/kBT )

= hν

exp(hν/kBT )− 1
. (1.1.7)

The energy density in radiation between frequencies ν and ν+dν is again given
by ρ dν = Ē Ndν/L3, which now with Eqs. (1.1.3) and (1.1.7) yields the Planck
formula (1.1.5).

Even after Millikan’s experiments had verified Einstein’s prediction for the
energies of photoelectrons, there remained considerable skepticism about the
reality of light quanta. This was largely dispelled by experiments on the scat-
tering of X-rays by Arthur Compton (1892–1962) in 1922–23.9 The energy of
X-rays is sufficiently high so that it is possible to ignore the much smaller bind-
ing energy of the electron in a light atom, treating the electron as a free particle.
Special relativity says that if a quantum of light has energy E = hν, then it
has momentum p = hν/c, in order to have m2

γ c4 = E2 − p2c2 = 0. If, for
instance, a light quantum is scattered backwards, then the scattered quantum has

5 A. Einstein, Ann. d. Physik 17, 132 (1905).
6 R. A. Millikan, Phys. Rev. 7, 355 (1916).
7 H. A. Lorentz, Phys. Z. 11m 1234 (1910).
8 J. W. Gibbs, Elementary Principles in Statistical Mechanics (New York, 1902).
9 A. H. Compton, Phys. Rev. 21, 207 (1923).
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1.2 Atomic Spectra 5

frequency ν ′ and the electron scattered forward has momentum hν/c + hν ′/c,
where ν ′ is given by the energy conservation condition:

hν + mec2 = hν ′ +
√

m2
ec4 + (hν/c + hν ′/c)2c2,

(where me is the electron mass), so

ν ′ = ν mec2

(2hν + mec2)
.

This is conventionally written as a formula relating the wavelengths λ = c/ν
and λ′ = c/ν ′:

λ′ = λ+ 2h/mec . (1.1.8)

The length h/mec = 2.425 × 10−10 cm is known as the Compton wavelength of
the electron. (For scattering at an angle θ , the factor 2 in Eq. (1.1.8) is replaced
with 1 − cos θ .) Verification of such relations convinced physicists of the exis-
tence of these quanta. A little later the chemist G. N. Lewis10 gave the quantum
of light the name by which it has been known ever since, the photon.

1.2 Atomic Spectra

Another problem confronted physicists throughout the nineteenth and early
twentieth centuries. It had been discovered early in the nineteenth century that
hot atomic gases emit and absorb light only at certain definite frequencies, the
pattern of frequencies, or spectrum, depending on the element in question. This
became a useful tool for chemical analysis, and for the discovery of new ele-
ments, such as helium, discovered in the spectrum of the Sun. But like writing
in a forgotten language, these atomic spectra provided no intelligible message.

No progress could be made in understanding atomic spectra without know-
ing something about the structure of atoms. After Thomson’s discovery of the
electron in 1897, it was widely believed that atoms were like puddings, with neg-
atively charged electrons stuck in like raisins in a smooth background of positive
charge. This picture was radically changed by experiments carried out in the
laboratory of Ernest Rutherford (1871–1937) at the University of Manchester
in 1909–1911. In these experiments a post-doc, Hans Geiger (1882-1945) and
an undergraduate Ernest Marsden (1889–1970) let a collimated beam of alpha
particles (He4 nuclei) from a radium source strike a thin gold foil. The alpha
particles passing through the foil were detected by flashes of light when they
struck a sheet of zinc sulphide. As expected, the beam was found to be slightly
spread out by scattering of alpha particles by the gold atoms. Then for some

10 G. N. Lewis, Nature, December 18, 1926.
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6 1 Historical Introduction

reason Rutherford had the idea of asking Geiger and Marsden to check whether
any alpha particles were scattered at large angles. This would not be expected
if the alpha particle hit a much lighter particle like the electron. If a particle of
mass M with velocity v hits a particle of mass m that is at rest, and continues
along the same line with velocity v′, giving the target particle a velocity u, the
equations of momentum and energy conservation give

Mv = mu + Mv′,
1

2
Mv2 = 1

2
Mv′2 + 1

2
mu2 . (1.2.1)

(In the notation used here, a positive velocity is in the same direction as the
original velocity of the alpha particle, while a negative velocity is in the opposite
direction.) Eliminating u, we obtain a quadratic equation for v′/v:

0 = (1 + M/m)(v′/v)2 − 2(M/m)(v′/v)− 1 + M/m .

This has two solutions. One solution is v′ = v. This solution is one for which
nothing happens — the incident particle just continues with the velocity it had
at the beginning. The interesting solution is the other one:

v′ = −v
(

m − M

m + M

)
. (1.2.2)

But this has a negative value (that is, a recoil backwards) only if m > M .
(Somewhat weaker limits on m can be inferred from scattering at any large
angle.)

Nevertheless, alpha particles were observed to be scattered at large angles. As
Rutherford later explained, “It was quite the most incredible event that has ever
happened to me in my life. It was almost as incredible as if you fired a 15-inch
shell at a piece of tissue paper, and it came back and hit you.”1

So the alpha particle must have been hitting something in the gold atom
much heavier than an electron, whose mass is only about 1/7300 the mass of
an alpha particle. Furthermore, the target particle must be quite small to stop
the alpha particle by the Coulomb repulsion of positive charges. If the charge of
the target particle is +Ze, then in order to stop the alpha particle with charge
+2e at a distance r from the target particle, the kinetic energy Mv2/2 must be
converted into a potential energy (2e)(Ze)/r , so r = 4Ze2/Mv2. The velocity
of the alpha particles emitted from radium is 2.09 × 109 cm/sec, so the distance
at which they would be stopped by a heavy target particle was 3Z × 10−14 cm,
which for any reasonable Z (even Z ≈ 100) is much smaller than the size of the
gold atom, a few times 10−8 cm.

1 Quoted by E. N. da Costa Andrade, Rutherford and the Nature of the Atom (Doubleday, Garden City,
NY, 1964).
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1.2 Atomic Spectra 7

Rutherford concluded2 then that the positive charge of the atom is concen-
trated in a small heavy nucleus, around which the much lighter negatively
charged electrons circulate in orbits, like planets around the Sun. But this only
heightened the mystery surrounding atomic spectra. A charged particle like the
electron circulating in orbit would be expected to radiate light, with the same
frequency as the orbital motion. The frequencies of these orbital motions could
be anything. Worse, as the electron lost energy to radiation it would spiral down
into the atomic nucleus. How could atoms remain stable?

In 1913 an answer was offered by a young visitor to Rutherford’s Manch-
ester laboratory, Niels Bohr (1885–1962). Bohr proposed in the first place that
the energies of atoms are quantized, in the sense that the atom exists in only a
discrete set of states, with energies (in increasing order) E1, E2, . . . . The fre-
quency of a photon emitted in a transition m → n or absorbed in a transition
n → m is given by Einstein’s formula E = hν and energy conservation by

ν = (Em − En)/h . (1.2.3)

A bright or dark spectral line is formed by atoms emitting or absorbing pho-
tons in a transition from a higher to a lower energy state, or vice versa. This
explained a rule, known as the Ritz combination principle, that had been noticed
experimentally by Walther Ritz (1878–1909) in 1908,3 (but without explaining
it), that the spectrum of any atom could be described more compactly by a set of
so-called “terms,” the frequencies of the spectrum being all given by differences
of the terms. These terms, according to Bohr, were just the energies En , divided
by h.

Bohr also offered a method for calculating the energies En , at least for elec-
trons in a Coulomb field, as in hydrogen, singly ionized helium, etc. Bohr noted
that Planck’s constant h has the same dimensions as angular momentum, and
he guessed that the angular momentum mevr of an electron of velocity v in
a circular atomic orbit of radius r is an integer multiple of some constant �,4

presumably of the same order of magnitude as h:

mevr = n� , n = 1, 2, . . . . (1.2.4)

(Bohr did not use the symbol �. Readers who know how � is related to h should
temporarily forget that information; for the present � is just another constant.)
Bohr combined this with the equation for the equilibrium of the orbit

mev
2

r
= Ze2

r2
(1.2.5)

2 E. Rutherford, Phil. Mag. 21, 669 (1911).
3 W. Ritz, Phys. Z. 9, 521 (1908).
4 N. Bohr, Phil. Mag. 26, 1, 476, 857 (1913); Nature 92, 231 (1913).
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8 1 Historical Introduction

and the formula for the electron’s energy

E = mev
2

2
− Ze2

r
. (1.2.6)

This gives

v = Ze2

n�
, r = n2

�
2

Zmee2
, E = − Z2e4me

2n2�2
. (1.2.7)

Using the Einstein relation between energy and frequency, the frequency of a
photon emitted in a transition between an orbit with quantum number n to one
with quantum number n′ < n is

ν = �E

h
= Z2e4me

2h�2

(
1

n′2 − 1

n2

)
. (1.2.8)

To find �, Bohr relied on a correspondence principle, that the results of clas-
sical physics should apply for large orbits — that is, for large n. If n � 1 and
n′ = n − 1, Eq. (1.2.8) gives ν = Z2e4me/h�

2n3. This may be compared with
the frequency of the electron in its orbit, v/2πr = Z2e4me/2πn3

�
3. Accord-

ing to classical electrodynamics these two frequencies should be equal, so Bohr
could conclude that � = h/2π . Using the value of h obtained by matching obser-
vations of black-body radiation with Planck’s formula, Bohr was able to derive
numerical values for velocity, radial coordinate, and energy of the electron:

v = Ze2

n�
	 Zc

137n
, (1.2.9)

r = n2
�

2

Zmee2
	 n2 × 0.529 Z−1 × 10−8 cm , (1.2.10)

E = − Z2e4me

2n2�2
	 − 13.6 Z2 eV

n2
. (1.2.11)

The striking agreement of Eq. (1.2.11) with the atomic energy levels of hydrogen
inferred from the frequencies of spectral lines was a strong indication that Bohr
was on the right track.

In this derivation Bohr had relied on the old idea of classical radiation theory,
that the frequencies of spectral lines should agree with the frequency of the
electron’s orbital motion, but he had assumed this only for the largest orbits,
with large n. The light frequencies he calculated for transitions between lower
states, such as n = 2 → n = 1, did not at all agree with the orbital frequency
of the initial or final state. So Bohr’s work represented another large step away
from classical physics.

Bohr’s formulas could be used not only for hydrogen (Z = 1), but also
roughly for the innermost orbits in heavier atoms, where the charge of the
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1.2 Atomic Spectra 9

nucleus is not screened by electrons, and we can take Ze as the actual charge
of the nucleus. For Z ≥ 10, the energy of a photon emitted in a transition from
n = 2 to n = 1 orbits is greater than 1 keV, and hence is in the X-ray spec-
trum. By measuring these X-ray energies, H. G. J. Moseley (1887–1915) was
able to find Z for a range of atoms from calcium to zinc. He discovered that,
within experimental uncertainty, Z is an integer, suggesting that the positive
charge of atomic nuclei is carried by particles of charge +e, much heavier than
the electron, to which Rutherford gave the name protons. Also, with just a few
exceptions, Z increased by one unit in going from any element to the element
with the next largest atomic weight A (roughly, the mass of the atom in units of
the hydrogen atom mass). But Z turned out to be not equal to A. For instance,
zinc has A = 60.37, and it turned out to have Z = 20.00. For some years it
was thought that the atomic weight was equal to the number of protons, with
the extra charge canceled by A − Z electrons. The discovery of the neutron by
James Chadwick (1891–1974) in 1932,5 found to have a mass close to that of the
hydrogen atom, showed that instead nuclei contain Z protons and approximately
A − Z neutrons.

Incidentally, Eqs. (1.2.9)–(1.2.11) also hold roughly for electrons in the outer-
most orbits in heavy atoms, where most of the charge of the nucleus is screened
by inner electrons, and Z can therefore be taken to be of order unity. This is
why the sizes of heavy atoms are not very much larger than those of light atoms,
and the frequency of light emitted in transitions of electrons in the outer orbits
of heavy atoms is comparable to the corresponding energies in hydrogen, and
hence in the visible range of the spectrum.

The Bohr theory applied only to circular orbits, but just as in the solar sys-
tem, the generic orbit of a particle in a Coulomb field is not a circle, but
an ellipse. A generalization of the Bohr quantization condition (1.2.4) was
proposed by Arnold Sommerfeld (1868–1951) in 1916,6 and used by him to
calculate the energies of electrons in elliptical orbits. Sommerfeld’s condition
was that in a system described by a Hamiltonian H(q, p), with several coordi-
nates qa and canonical conjugates pa satisfying the equations q̇a = ∂H/∂pa and
ṗa = −∂H/∂qa , if all qs and ps have a periodic time-dependence (as for closed
orbits), then for each a ∮

pa dqa = nah , (1.2.12)

(with na an integer), the integral taken over one period of the motion. For
instance, for an electron in a circular orbit we can take q as the angle traced
out by the line connecting the nucleus and the electron, and p as the angular
momentum mevr , in which case

∮
p dq = 2πmevr , and (1.2.12) is the same as

5 J. Chadwick, Nature, February 27, 1932).
6 A. Sommerfeld, Ann. d. Physik 51, 1(1916)
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10 1 Historical Introduction

Bohr’s condition (1.2.4). We will not pursue this approach here, because it was
soon made obsolete by the advent of wave mechanics.

In 1916 (in his spare time while discovering the general theory of relativity),
Einstein returned to the theory of black-body radiation,7 this time combining it
with the Bohr idea of quantized atomic energy states. Einstein defined a quantity
An

m as the rate at which an atom will spontaneously make a transition from a
state m to a state n of lower energy, emitting a photon of energy Em − En . He
also considered the absorption of photons from radiation (not necessarily black-
body radiation) with an energy density ρ(ν)dν at frequencies between ν and
ν + dν. The rate at which an individual atom in such a field makes a transition
from a state n to a state m of higher energy is written as Bm

n ρ(νnm), where
νnm ≡ (Em − En)/h is the frequency of the absorbed photon. Einstein also took
into account the possibility that the radiation would stimulate the emission of
photons by the atom in transitions from a state m to a state n of lower energy, at
a rate written as Bn

mρ(νnm). The coefficients Bm
n and Bn

m like An
m are assumed to

depend only on the properties of the atoms, not the radiation.
Now, suppose the radiation is black-body radiation at a temperature T , with

which the atoms are in equilibrium. The energy density of the radiation will
be the function ρ(ν, T ), given by Eq. (1.1.5). In equilibrium the rate at which
atoms make a transition m → n from higher to lower energy must equal the rate
at which atoms make the reverse transition n → m:

Nm
[
An

m + Bn
mρ(νnm, T )

] = Nn Bm
n ρ(νnm, T ) , (1.2.13)

where Nn and Nm are the numbers of atoms in states n and m. According to the
Boltzmann rule of classical statistical mechanics, the number of atoms in a state
of energy E is proportional to exp(−E/kBT ), so

Nm/Nn = exp (−(Em − En)/kBT ) = exp (−hνnm/kBT ) . (1.2.14)

(It is important here to take the Nn as the numbers of atoms in individual states
n, some of which may have precisely the same energy, rather than the numbers
of atoms with energies En .) Putting this together, we have

An
m = 8πh

c3

ν3
nm

exp(hνnm/kBT )− 1

(
exp(hνnm/kBT ) Bm

n − Bn
m

)
. (1.2.15)

For this to be possible at all temperatures for temperature-independent A and B
coefficients, these coefficients must be related by

Bn
m = Bm

n , An
m =

(
8πhν3

nm

c3

)
Bn

m . (1.2.16)

Hence, knowing the rate at which a classical light wave of a given energy den-
sity is absorbed or stimulates emission by an atom, we can calculate the rate

7 A. Einstein, Phys. Z. 18, 121 (1917).
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