Temporal Logics in Computer Science

This comprehensive text provides a modern and technically precise exposition of the fundamental theory and applications of temporal logics in computer science. Part I presents the basics of discrete transition systems, including constructions and behavioural equivalences. Part II examines the most important temporal logics for transition systems and Part III looks at their expressiveness and complexity. Finally, Part IV describes the main computational methods and decision procedures for model checking and model building – based on tableaux, automata and games – and discusses their relationships.

The book contains a wealth of examples and exercises, as well as an extensive annotated bibliography. Thus, the book is not only a solid professional reference for researchers in the field but also a comprehensive graduate textbook that can be used for self-study as well as for teaching courses.

STÉPHANE DEMRI is a CNRS directeur de recherche at Laboratoire Spéciication et Vérification (LSV), ENS de Cachan, and he is currently the head of LSV. His current research interests include verification of infinite-state systems, temporal logics and analysis of systems with data. He has participated in numerous international and national projects and has been co-responsible for bilateral projects with Poland, South Africa and Australia. He is regularly involved in teaching, in program committees, in steering committees and in editorial boards. He has co-authored more than 125 publications in the field of formal/logical methods for analysing computer systems, including a monograph, 4 edited proceedings, 6 book chapters and 50 articles in international journals.

VALENTIN GORANKO is currently a professor of logic and theoretical philosophy at Stockholm University. He has more than 30 years of university teaching and research experience in mathematics, computer science and philosophy in universities in Bulgaria, South Africa, Denmark and Sweden. His main expertise and research interests are in theory and applications of modal and temporal logics to computer science, artificial intelligence, multiagent systems and philosophy. He has authored and co-authored more than 100 publications, including two recent textbooks on logic and discrete mathematics. He is a member of several editorial boards and steering bodies of professional organisations and is currently the vice-president of the Association for Logic, Language and Information (FoLLI).

MARTIN LANGE is currently a professor in theoretical computer science at the University of Kassel, Germany. His research interests include model checking and general decision procedures for logics in computer science with a focus on temporal logics. He has published more than 80 papers in international journals and conference proceedings. He received an ERC Starting Grant in 2010 and a Heisenberg professorship from the German Research Council in 2013.
Temporal Logics in Computer Science
Finite-State Systems

STÉPHANE DEMRI
Centre National de la Recherche Scientifique (CNRS), France

VALENTIN GORANKO
Stockholms Universitet

MARTIN LANGE
Universität Kassel, Germany
Contents

1 Introduction
1.1 Temporal Logics and Computer Science: A Brief Overview
1.2 Structure and Summary of the Book Content
1.3 Using the Book for Teaching or Self-Study

PART I MODELS
2 Preliminaries and Background I
2.1 Sets and Relations
2.2 Some Fundamental Preliminaries

3 Transition Systems
3.1 Basic Concepts
3.2 Reachability
3.3 Bisimulation Relations
3.4 Bisimilarity
3.5 Trace Equivalence
3.6 Exercises
3.7 Bibliographical Notes

PART II LOGICS
4 Preliminaries and Background II
4.1 Preliminaries on Modal Logic
4.2 Logical Decision Problems
4.3 Expressive Power
4.4 Deductive Systems

5 Basic Modal Logics
5.1 The Basic Modal Logic BML
5.2 Renaming and Normal Forms
5.3 Modal and Bisimulation Equivalence
5.4 Model Checking
5.5 Satisfiability and the Tree Model Property

© in this web service Cambridge University Press
www.cambridge.org
vi

5.6 The Basic Tense Logic BTL 131
5.7 Axiomatic Systems 135
5.8 Exercises 141
5.9 Bibliographical Notes 146

6 Linear-Time Temporal Logics 150
6.1 Syntax and Semantics on Linear Models 152
6.2 Logical Decision Problems 159
6.3 The Small Model Property 164
6.4 Decision Procedures 169
6.5 Adding Past-Time Operators 176
6.6 Invariance Properties 182
6.7 Extensions of LTL 185
6.8 An Axiomatic System for LTL 191
6.9 Exercises 196
6.10 Bibliographical Notes 206

7 Branching-Time Temporal Logics 209
7.1 A Hierarchy of Branching-Time Logics 211
7.2 Bisimulation Invariance 228
7.3 Model Checking 233
7.4 Some Fragments and Extensions of CTL* 241
7.5 Axiomatic Systems 252
7.6 Exercises 259
7.7 Bibliographical Notes 265

8 The Modal Mu-Calculus 271
8.1 Fixpoint Quantifiers 272
8.2 Fixpoint Iteration 282
8.3 The Structural Complexity of Formulae 289
8.4 Model-Checking Games 303
8.5 Bisimulation Invariance 309
8.6 The Second-Order Nature of Temporal Logics 313
8.7 Variants 315
8.8 Exercises 320
8.9 Bibliographical Notes 324

9 Alternating-Time Temporal Logics 329
9.1 Concurrent Multiagent Transition Systems 330
9.2 Temporal Logics for Concurrent Game Models 337
9.3 Logical Decision Problems 346
9.4 Exercises 352
9.5 Bibliographical Notes 355
PART III PROPERTIES

10 Expressiveness
 10.1 Embeddings among Linear-Time Logics 363
 10.2 Embeddings among Branching-Time Logics 376
 10.3 Separation Results 385
 10.4 Exercises 409
 10.5 Bibliographical Notes 414

11 Computational Complexity
 11.1 Proving Lower Bounds 421
 11.2 Linear-Time Temporal Logics 435
 11.3 Branching-Time Temporal Logics 445
 11.4 An Overview of Completeness Results 453
 11.5 Exercises 457
 11.6 Bibliographical Notes 460

PART IV METHODS

12 Frameworks for Decision Procedures
 12.1 A Brief Introduction to Three Methodologies 468
 12.2 The Frameworks Compared 472

13 Tableaux-Based Decision Methods
 13.1 A Generic Incremental Tableau Construction 479
 13.2 Tableaux for LTL 498
 13.3 Tableaux for TLR and CTL 514
 13.4 Exercises 536
 13.5 Bibliographical Notes 540

14 The Automata-Based Approach
 14.1 Introduction to Nondeterministic Büchi Automata 546
 14.2 From LTL Formulae to Automata 552
 14.3 Introduction to Alternating Automata on Words 570
 14.4 From LTL Formulae to Alternating Büchi Automata 581
 14.5 Extensions of LTL 591
 14.6 Tree Automata for Branching-Time Logics 598
 14.7 Alternating Tree Automata and CTL 606
 14.8 Exercises 615
 14.9 Bibliographical Notes 621

15 The Game-Theoretic Framework
 15.1 Parity Games 627
 15.2 Constructions for Automata on Infinite Words 647
 15.3 Model Checking 659
viii

Contents

15.4 Satisifiability Checking 682
15.5 Exercises 705
15.6 Bibliographical Notes 711

References 716
Index 737