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CHAPTER 1

Varieties of Count Data

SOME POINTS OF DISCUSSION

� What are counts? What are count data?
� What is a linear statistical model?
� What is the relationship between a probability distribution function (PDF)

and a statistical model?
� What are the parameters of a statistical model? Where do they come from,

and can we ever truly know them?
� How does a count model differ from other regression models?
� What are the basic count models, and how do they relate with one another?
� What is overdispersion, and why is it considered to be the fundamental

problem when modeling count data?

1.1 WHAT ARE COUNTS?

When discussing the modeling of count data, it’s important to clarify exactly

what is meant by a count, as well as “count data” and “count variable.” The

word “count” is typically used as a verb meaning to enumerate units, items,

or events. We might count the number of road kills observed on a stretch of

highway, how many patients died at a particular hospital within 48 hours of

having a myocardial infarction, or how many separate sunspots were observed

in March 2013. “Count data,” on the other hand, is a plural noun referring
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2 VARIETIES OF COUNT DATA

to observations made about events or items that are enumerated. In statistics,

count data refer to observations that have only nonnegative integer values

ranging from zero to some greater undetermined value. Theoretically, counts

can range from zero to infinity, but they are always limited to some lesser

distinct value – generally the maximum value of the count data being modeled.

When the data being modeled consist of a large number of distinct values,

even if they are positive integers, many statisticians prefer to model the counts

as if they were continuous data. We address this issue later in the book.

A “count variable” is a specific list or array of count data. Again, such

observations can only take on nonnegative integer values. However, in a

statistical model, a response variable is understood as being a random variable,

meaning that the particular set of enumerated values or counts could be other

than they are at any given time. Moreover, the values are assumed to be

independent of one another (i.e., they show no clear evidence of correlation).

This is an important criterion for count model data, and it stems from the fact

that the observations of a probability distribution are independent. On the

other hand, predictor values are fixed; that is, they are given as facts, which

are used to better understand the response.

We will be primarily concerned with four types of count variables in this

book. They are:

1. A count or enumeration of events

2. A count of items or events occurring within a period of time or over a

number of periods

3. A count of items or events occurring in a given geographical or spatial area

or over various defined areas

4. A count of the number of people having a particular disease, adjusted by

the size of the population at risk of contracting the disease

Understanding how count data are modeled, and what modeling entails, is

discussed in the following section. For readers with little background in linear

models, I strongly suggest that you read through Chapter 1 even though var-

ious points may not be fully understood. Then re-read the chapter carefully.

The essential concepts and relationships involved in modeling should then

be clear. In Chapter 1, I have presented the fundamentals of modeling, focus-

ing on normal and count model estimation from several viewpoints, which

should at the end provide the reader with a sense of how the modeling process

is to be understood when applied to count models. If certain points are still
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1.2 Understanding a Statistical Count Model 3

unclear, I am confident that any problem areas regarding the assessment of

fit will be clear by the time you read through Chapter 4, on assessing model

fit. Those who have taken a statistics course in which linear regression is

examined should have no problem following the presentation.

1.2 UNDERSTANDING A STATISTICAL COUNT MODEL

1.2.1 Basic Structure of a Linear Statistical Model

Statistics may be generically understood as the science of collecting and ana-

lyzing data for the purpose of classification, prediction, and of attempting to

quantify and understand the uncertainty inherent in phenomena underlying

data.

A statistical model describes the relationship between one or more variables

on the basis of another variable or variables. For the purpose of the models we

discuss in this book, a statistical model can be understood as the mathematical

explanation of a count variable on the basis of one or more explanatory

variables.1 Such statistical models are stochastic, meaning that they are based

on probability functions. The traditional linear regression model is based on

the normal or Gaussian probability distribution and can be formalized in the

most simple case as

Y = �0 + �X + ε (1.1)

where Y is called the response, outcome, dependent, or sometimes just the y

variable. We use the term “response” or y when referring to the variable being

modeled. X is the explanatory or predictor variable that is used to explain

the occurrence of y. � is the coefficient for X. It is a slope describing the rate

of change in the response based on a one-unit change in X, holding other

predictor values constant (usually at their mean values). �0 is the intercept,

which provides a value to fitted y, or ŷ, when, or if, X has the value of 0. ε

(epsilon) is the error term, which reflects the fact that the relationship between

X and Y is not exact, or deterministic. For the normal or linear regression

model, the errors are Gaussian or normally distributed, which is the most

1 A model may consist of only the response variable, unadjusted by explanatory
variables. Such a model is estimated by modeling the response on the intercept.
For example, using R: lm(y � 1); using Stata: reg y.
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4 VARIETIES OF COUNT DATA

well-used and basic probability distribution in statistics. ε is also referred to

as the residual term.

When a linear regression has more than one predictor, it may be schema-

tized by giving a separate beta and X value for each predictor, as

Y = �0 + �1 X1 + �2 X2 + · · · + �n Xn + ε (1.2)

Statisticians usually convert equation (1.2) to one that has the left-hand side

being the predicted or expected mean value of the response, based on the sum

of the predictors and coefficients. Each associated coefficient and predictor is

called a regression term:

ŷ = �0 + �1 X1 + �2 X2 + · · · + �n Xn (1.3)

or

�̂ = �0 + �1 X1 + �2 X2 + · · · + �n Xn (1.4)

Notice that the error became part of the expected or predicted mean response.

“̂”, or hat over y and � (mu), indicates that this is an estimated value. From

this point on, I use the symbol � to refer to the predicted value, without a hat.

Understand, though, that when we are estimating a parameter or a statistic,

a hat should go over it. The true unknown parameter, on the other hand, has

no hat. You will also at times see the term E(y) used to mean “estimated y.” I

will not use it here.

In matrix form, where the individual terms of the regression are expressed

in a single term, we have

� = �X (1.5)

with �X being understood as the summation of the various terms, including

the intercept. As you may recall, the intercept is defined as �0(1), or simply

�0. It is therefore a term that can be placed within the single matrix term

�X. When models become complicated, viewing them in matrix form is

the only feasible way to see the various relationships involved. I should

mention that sometimes you see the term �X expressed as x�. I reserve this

symbol for another part of the model, which we discuss a bit later in this

section.
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1.2 Understanding a Statistical Count Model 5

Let’s look at example data (smoking). Suppose that we have a six-

observation model consisting of the following variables:

sbp: systolic blood pressure of subject

male: 1 = male; 0 = female

smoker: 1 = history of smoking; 0 = no history of smoking

age: age of subject

Using Stata statistical software, we display a linear regression of sbp on male,

smoker, and age, producing the following (nohead suppresses the display of

header statistics).

STATA CODE

. regress sbp male smoker age, nohead

------------------------------------------------------------------------

sbp | Coef. Std. Err. t P�|t| [95% Conf. Interval]

-------+----------------------------------------------------------------

male | 4.048601 .2507664 16.14 0.004 2.96964 5.127562

smoker | 6.927835 .1946711 35.59 0.001 6.090233 7.765437

age | .4698085 .02886 16.28 0.004 .3456341 .593983

̲ cons | 104.0059 .7751557 134.17 0.000 100.6707 107.3411

------------------------------------------------------------------------

Continuing with Stata, we may obtain the predicted value, �, which is the

estimated mean systolic blood pressure, and display the predictor values

together with � (mu) as

. predict mu

. l // ’l’ is an abbreviation for list

+------------------------------------+

| sbp male smoker sge mu |

|------------------------------------|

1. | 131 1 1 34 130.9558 |

2. | 132 1 1 36 131.8954 |

3. | 122 1 0 30 122.1488 |

4. | 119 0 0 32 119.0398 |

5. | 123 0 1 26 123.1488 |

6. | 115 0 0 23 114.8115 |

+------------------------------------+

To see exactly what this means, we sum the terms of the regression. The

intercept term is also summed, but its values are set at 1. The _b[] term
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6 VARIETIES OF COUNT DATA

captures the coefficient from the results saved by the software. For the inter-

cept, _b[_cons] adds the intercept term, slope[1], to the other values. The

term xb is also commonly referred to as the linear predictor.

. gen xb = _b[male]*male + _b[smoker]*smoker + _b[age]*age + _b[_cons]

. l

+-----------------------------------------------+

| sbp male smoker age mu xb |

|-----------------------------------------------|

1. | 131 1 1 34 130.9558 130.9558 |

2. | 132 1 1 36 131.8954 131.8954 |

3. | 122 1 0 30 122.1488 122.1488 |

4. | 119 0 0 32 119.0398 119.0398 |

5. | 123 0 1 26 123.1488 123.1488 |

6. | 115 0 0 23 114.8115 114.8115 |

+-----------------------------------------------+

The intercept is defined correctly; check by displaying it. The value is

indeed 1,

. di _cons

1

whereas _b[_cons] is the constant slope of the intercept as given in the

preceding regression output:

. di _b[_cons] /* intercept slope */

104.00589

Using R, we may obtain the same results with the following code:

R CODE

� sbp �- c(131,132,122,119,123,115)

� male �- c(1,1,1,0,0,0)

� smoker �- c(1,1,0,0,1,0)

� age �- c(34,36,30,32,26,23)

� summary(reg1 �- lm(sbp~ male+smoker+age))

�results not displayed�

Predicted values may be obtained by

� mu �- predict(reg1)

� mu

1 2 3 4 5 6

130.9558 131.8954 122.1487 119.0398 123.1487 114.8115
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1.2 Understanding a Statistical Count Model 7

As was done with the Stata code, we may calculate the linear predictor, which

is the same as �, by first abstracting the coefficient

� cof �- reg1$coef

� cof

(Intercept) male smoker age

104.0058910 4.0486009 6.9278351 0.4698085

and then the linear predictor, xb. Each coefficient can be identified with [ ].

The values are identical to mu.

� xb �- cof[1] + cof[2]*male + cof[3]*smoker + cof[4]*age

� xb

[1] 130.9558 131.8954 122.1487 119.0398 123.1487 114.8115

Notice the closeness of the observed response and predicted values. The

differences are

� diff �- sbp - mu

� diff

1 2 3 4 5 6

0.04418262 0.10456554 -0.14874816 -0.03976436 -0.14874816 0.18851252

When the values of the linear predictor are close to the predicted or expected

values, we call the model well fitted.

1.2.2 Models and Probability

One of the points about statistical modeling rarely discussed is the relation-

ship of the data to a probability distribution. All parametric statistical models

are based on an underlying probability distribution. I mentioned before that

the normal or linear regression model is based on the Gaussian, or nor-

mal, probability distribution (see example in Figure 1.1). It is what defines

the error terms. When we are attempting to estimate a least squares regres-

sion or more sophisticated maximum likelihood model, we are estimating

the parameters of the underlying probability distribution that characterize

the data. These two foremost methods of estimation are described in the next

section of this opening chapter. The important point here is always to remem-

ber that when modeling count data we are really estimating the parameters

of a probability distribution that we believe best represents the data we are

modeling. We are never able to knowingly determine the true parameters
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8 VARIETIES OF COUNT DATA
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FIGURE 1.1. Gaussian distribution approximated by blood pressure data.

of the probability distribution function, which we shall refer to as the PDF,

but we attempt to obtain the best unbiased estimate possible. The parameters

are what provide the shape of the PDF we are using to describe the data. By

knowing the estimated parameter or parameters, we can use them to predict

data from inside the sample of data from which we are modeling and in special

cases data from outside the sample.

This is also an important point to keep in mind. We assume that the

data being modeled are a random sample from a greater population of data.

The PDF whose parameters we are attempting to estimate is assumed to

describe the population data, not only the sample from it that we are actually

modeling. This way of looking at statistics and data is commonly referred to as

frequency-based statistical modeling. Bayesian models look at the relationship

of data to probability distributions in a different manner, which we discuss

in the final chapter. However, the standard way of modeling is based on

this frequency interpretation, which was championed by Ronald Fisher in

the early twentieth century and has dominated statistics since. I might say

here, though, that many statisticians are turning to Bayesian estimation when

modeling certain types of data. Again, we’ll address this situation in the final

chapter, proposing several predictions in the process.
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1.2 Understanding a Statistical Count Model 9

1.2.3 Count Models

The majority of count models discussed in this book are based on two prob-

ability distributions – the Poisson and negative binomial PDFs. I add three

additional models in this volume that I consider important when initially

evaluating count data – the Poisson inverse Gaussian model, or PIG, Greene’s

three-parameter negative binomial P, or NB-P, and generalized Poisson (GP)

models. These five distributions are closely related. The Poisson distribution

has a single parameter to be estimated, �, or the mean, which is also some-

times referred to as the location parameter. The unique feature of the Poisson

distribution is that the mean and variance are the same. The higher the value

of the mean of the distribution, the greater the variance or variability in the

data. For instance, if we are modeling the number of cars failing to properly

stop at two different stop signs per day over a period of a month, and if the

average number of failures to stop per day at Site A is 4 and at Site B is 8, we

automatically know that the variance of the distribution of failures at Site A is

also 4 and at Site B is 8. No other measurements need be done – that is, if the

true distribution at each site is Poisson. Recall from algebra that the variance

is the square of the standard deviation. The mean and standard deviation of

the counts of failures at Site A are 4 and 2, respectively, and at Site B are 8

and 2
√

2.

This criterion of the Poisson distribution is referred to as the equidispersion

criterion. The problem is that when modeling real data, the equidispersion

criterion is rarely satisfied. Analysts usually must adjust their Poisson model

in some way to account for any under- or overdispersion that is in the data.

Overdispersion is by far the foremost problem facing analysts who use Poisson

regression when modeling count data.

I should be clear about the meaning of overdispersion since it is central

to the modeling of count data and therefore plays an important role in this

book. Overdispersion almost always refers to excess variability or correlation

in a Poisson model, but it also needs to be considered when modeling other

count models as well. Keep in mind, however, that when the term “overdis-

persion” is used, most analysts are referring to Poisson overdispersion (i.e.,

overdispersion in a Poisson model).

Simply put, Poisson overdispersion occurs in data where the variability of

the data is greater than the mean. Overdispersion also is used to describe data

in a slightly more general sense, as when the observed or “in fact” variance of

the count response is greater than the variance of the predicted or expected

counts. This latter type of variance is called expected variance. Again, if the

www.cambridge.org/9781107028333
www.cambridge.org


Cambridge University Press
978-1-107-02833-3 — Modeling Count Data
Joseph M. Hilbe 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

10 VARIETIES OF COUNT DATA

observed variance of the response is greater than the expected variance, the

data are overdispersed. A model that fails to properly adjust for overdispersed

data is called an overdispersed model. As such, its standard errors are biased

and cannot be trusted. The standard errors associated with model predictors

may appear from the model to significantly contribute to the understanding

of the response, but in fact they may not. Many analysts have been deceived

into thinking that they have developed a well-fitted model.

Unfortunately, statistical software at times fails to provide an analyst with

the information needed to determine if a Poisson model is overdispersed or

underdispersed. We discuss in some detail exactly how we can determine

whether a model is overdispersed. More properly perhaps, this book will pro-

vide guidelines to help you decide whether a Poisson model is equidispersed.

Probably the most popular method of dealing with apparent Poisson

overdispersion is to model the data using a negative binomial model. The

negative binomial distribution has an extra parameter, referred to as the

negative binomial dispersion parameter. Some books and articles call the dis-

persion parameter the heterogeneity parameter or ancillary parameter. These

are appropriate names as well. The dispersion parameter is a measure of the

adjustment needed to accommodate the extra variability, or heterogeneity, in

the data. However, the term dispersion parameter has become the standard

name for the second parameter of the negative binomial distribution.

The negative binomial, which we discuss in more detail later, allows more

flexibility in modeling overdispersed data than does a single-parameter Pois-

son model. The negative binomial is derived as a Poisson-gamma mixture

model, with the dispersion parameter being distributed as gamma shaped.

The gamma PDF is pliable and allows for a wide variety of shapes. As a

consequence, most overdispersed count data can be appropriately modeled

using a negative binomial regression. The advantage of using the negative

binomial rests with the fact that when the dispersion parameter is zero (0),

the model is Poisson.2 Values of the dispersion parameter greater than zero

indicate that the model has adjusted for correspondingly greater amounts of

2 I term this the direct parameterization of the negative binomial. Unlike most com-
mercial statistical software, R’s glm and glm.nb functions employ an inverted
relationship of the dispersion parameter, theta, so that a Poisson model results
when theta approaches infinity. Most subsequent R functions have followed glm

and glm.nb. I maintain the direct relationship for all count models in this volume
and discuss the differences between the two parameterizations in some detail later
in the book.
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