Predictive Statistics

Analysis and Inference beyond Models

All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence on estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require that predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary ‘blackbox’ techniques and emerging data types and methodologies, where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations.

BERTRAND S. CLARKE is Chair of the Department of Statistics at the University of Nebraska, Lincoln. His research focuses on predictive statistics and statistical methodology in genomic data. He is a fellow of the American Statistical Association, serves as editor or associate editor for three journals, and has published numerous papers in several statistical fields as well as a book on data mining and machine learning.

JENNIFER L. CLARKE is Professor of Food Science and Technology, Professor of Statistics, and Director of the Quantitative Life Sciences Initiative at the University of Nebraska, Lincoln. Her current interests include statistical methodology for metagenomics and also prediction, statistical computation, and multitype data analysis. She serves on the steering committee of the Midwest Big Data Hub and is Co-Principal Investigator on an award from the NSF focused on data challenges in digital agriculture.
CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS

Editorial Board
Z. Ghahramani (Department of Engineering, University of Cambridge)
R. Gill (Mathematical Institute, Leiden University)
F. P. Kelly (Department of Pure Mathematics and Mathematical Statistics, University of Cambridge)
B. D. Ripley (Department of Statistics, University of Oxford)
S. Ross (Department of Industrial and Systems Engineering, University of Southern California)
M. Stein (Department of Statistics, University of Chicago)

This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical programming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice.

A complete list of books in the series can be found at www.cambridge.org/statistics.

Recent titles include the following:

20. Random Graph Dynamics, by Rick Durrett
21. Networks, by Peter Whittle
22. Saddlepoint Approximations with Applications, by Ronald W. Butler
23. Applied Asymptotics, by A. R. Brazzale, A. C. Davison and N. Reid
24. Random Networks for Communication, by Massimo Franceschetti and Ronald Meester
25. Design of Comparative Experiments, by R. A. Bailey
26. Symmetry Studies, by Marlos A. G. Viana
27. Model Selection and Model Averaging, by Gerda Claeskens and Nils Lid Hjort
30. Brownian Motion, by Peter Mörters and Yuval Peres
31. Probability (Fourth Edition), by Rick Durrett
33. Stochastic Processes, by Richard F. Bass
34. Regression for Categorical Data, by Gerhard Tutz
35. Exercises in Probability (Second Edition), by Loïc Chaumont and Marc Yor
37. Quantum Stochastics, by Mou-Hsiung Chang
38. Nonparametric Estimation under Shape Constraints, by Piet Groeneboom and Geurt Jongbloed
39. Large Sample Covariance Matrices and High-Dimensional Data Analysis, by Jianfeng Yao, Shurong Zheng and Zhidong Bai
40. Mathematical Foundations of Infinite-Dimensional Statistical Models, by Evarist Giné and Richard Nickl
41. Confidence, Likelihood, Probability, by Tore Schweder and Nils Lid Hjort
42. Probability on Trees and Networks, by Russell Lyons and Yuval Peres
43. Random Graphs and Complex Networks (Volume 1), by Remco van der Hofstad
44. Fundamentals of Nonparametric Bayesian Inference, by Subhashis Ghosal and Aad van der Vaart
45. Long-Range Dependence and Self-Similarity, by Vladas Pipiras and Murad S. Taqqu
46. Predictive Statistics, by Bertrand S. Clarke and Jennifer L. Clarke
Predictive Statistics
Analysis and Inference beyond Models

Bertrand S. Clarke
University of Nebraska, Lincoln

Jennifer L. Clarke
University of Nebraska, Lincoln
Contents

<table>
<thead>
<tr>
<th>Expanded Contents</th>
<th>page vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
</tbody>
</table>

Part I The Predictive View

1	Why Prediction?	3
2	Defining a Predictive Paradigm	34
3	What about Modeling?	67
4	Models and Predictors: A Bickering Couple	86

Part II Established Settings for Prediction

5	Time Series	125
6	Longitudinal Data	161
7	Survival Analysis	206
8	Nonparametric Methods	249
9	Model Selection	307

Part III Contemporary Prediction

10	Blackbox Techniques	361
11	Ensemble Methods	449
12	The Future of Prediction	524

References

605

Index

635
Expanded Contents

Preface xi

Part I The Predictive View 1
 1 Why Prediction? 3
 1.1 Motivating the Predictive Stance 4
 1.2 Some Examples 11
 1.2.1 Prediction with Ensembles rather than Models 12
 1.2.2 Hypothesis Testing as Prediction 21
 1.2.3 Predicting Classes 26
 1.3 General Issues 32

 2 Defining a Predictive Paradigm 34
 2.1 The Sunrise Problem 34
 2.2 Parametric Families 41
 2.2.1 Frequentist Parametric Case 41
 2.2.2 Bayesian Parametric Case 43
 2.2.3 Interpretation 46
 2.3 The Abstract Version 47
 2.3.1 Frequentism 48
 2.3.2 Bayes Approach 51
 2.3.3 Survey Sampling 56
 2.3.4 Predictivist Approach 58
 2.4 A Unified Framework for Predictive Analysis 63

 3 What about Modeling? 67
 3.1 Problem Classes for Models and Predictors 68
 3.2 Interpreting Modeling 73
 3.3 The Dangers of Modeling 75
 3.4 Modeling, Inference, Prediction, and Data 78
 3.5 Frequentialism 80

 4 Models and Predictors: A Bickering Couple 86
 4.1 Simple Nonparametric Cases 87
 4.2 Fixed Effects Linear Regression 94
 4.3 Quantile Regression 101
 4.4 Comparisons: Regression 104
Expanded Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>108</td>
</tr>
<tr>
<td>4.6</td>
<td>111</td>
</tr>
<tr>
<td>4.7</td>
<td>115</td>
</tr>
<tr>
<td>4.8</td>
<td>116</td>
</tr>
<tr>
<td>4.9</td>
<td>119</td>
</tr>
<tr>
<td>Part II Established Settings for Prediction</td>
<td>123</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
</tr>
<tr>
<td>5.1</td>
<td>125</td>
</tr>
<tr>
<td>5.2</td>
<td>128</td>
</tr>
<tr>
<td>5.2.1</td>
<td>129</td>
</tr>
<tr>
<td>5.2.2</td>
<td>132</td>
</tr>
<tr>
<td>5.2.3</td>
<td>133</td>
</tr>
<tr>
<td>5.2.4</td>
<td>135</td>
</tr>
<tr>
<td>5.3</td>
<td>139</td>
</tr>
<tr>
<td>5.4</td>
<td>142</td>
</tr>
<tr>
<td>5.5</td>
<td>150</td>
</tr>
<tr>
<td>5.6</td>
<td>156</td>
</tr>
<tr>
<td>5.6.1</td>
<td>157</td>
</tr>
<tr>
<td>5.6.2</td>
<td>159</td>
</tr>
<tr>
<td>6</td>
<td>161</td>
</tr>
<tr>
<td>6.1</td>
<td>167</td>
</tr>
<tr>
<td>6.2</td>
<td>172</td>
</tr>
<tr>
<td>6.3</td>
<td>180</td>
</tr>
<tr>
<td>6.4</td>
<td>184</td>
</tr>
<tr>
<td>6.4.1</td>
<td>184</td>
</tr>
<tr>
<td>6.4.2</td>
<td>193</td>
</tr>
<tr>
<td>6.4.3</td>
<td>194</td>
</tr>
<tr>
<td>6.5</td>
<td>194</td>
</tr>
<tr>
<td>6.6</td>
<td>201</td>
</tr>
<tr>
<td>6.6.1</td>
<td>203</td>
</tr>
<tr>
<td>6.6.2</td>
<td>204</td>
</tr>
<tr>
<td>7</td>
<td>206</td>
</tr>
<tr>
<td>7.1</td>
<td>208</td>
</tr>
<tr>
<td>7.1.1</td>
<td>208</td>
</tr>
<tr>
<td>7.1.2</td>
<td>216</td>
</tr>
<tr>
<td>7.1.3</td>
<td>219</td>
</tr>
<tr>
<td>7.1.4</td>
<td>221</td>
</tr>
<tr>
<td>7.1.5</td>
<td>222</td>
</tr>
<tr>
<td>7.2</td>
<td>226</td>
</tr>
<tr>
<td>7.2.1</td>
<td>228</td>
</tr>
<tr>
<td>7.2.2</td>
<td>231</td>
</tr>
<tr>
<td>7.2.3</td>
<td>233</td>
</tr>
<tr>
<td>7.2.4</td>
<td>236</td>
</tr>
<tr>
<td>7.3</td>
<td>239</td>
</tr>
<tr>
<td>7.4</td>
<td>245</td>
</tr>
</tbody>
</table>
Expanded Contents

7.4.1 Accelerated Failure Time (AFT) Models 245
7.4.2 Competing Risks 246

8 Nonparametric Methods 249
8.1 Predictors Using Orthonormal Basis Expansions 252
8.2 Predictors Based on Kernels 260
8.2.1 Kernel Density Estimation 260
8.2.2 Kernel Regression: Deterministic Designs 266
8.2.3 Kernel Regression: Random Design 270
8.3 Predictors Based on Nearest Neighbors 275
8.3.1 Nearest Neighbor Density Estimation 275
8.3.2 Nearest Neighbor Regression 281
8.3.3 Beyond the Independence Case 285
8.4 Predictors from Nonparametric Bayes 286
8.4.1 Polya Tree Process Priors for Distribution Estimation 288
8.4.2 Gaussian Process Priors for Regression 291
8.5 Comparing Nonparametric Predictors 294
8.5.1 Description of the Data, Methods, and Results 295
8.5.2 M-Complete or M-Open? 300
8.6 Endnotes 302
8.6.1 Smoothing Splines 303
8.6.2 Nearest Neighbor Classification 304
8.6.3 Test-Based Prediction 304

9 Model Selection 307
9.1 Linear Models 312
9.2 Information Criteria 320
9.3 Bayes Model Selection 327
9.4 Cross-Validation 334
9.5 Simulated Annealing 339
9.6 Markov Chain Monte Carlo and the Metropolis–Hastings Algorithm 344
9.7 Computed Examples: SA and MCMC–MH 348
9.8 Endnotes 353
9.8.1 DIC 354
9.8.2 Posterior Predictive Loss 354
9.8.3 Information-Theoretic Model Selection Procedures 355
9.8.4 Scoring Rules and BF s Redux 356

Part III Contemporary Prediction 359
10 Blackbox Techniques 361
10.1 Classical Nonlinear Regression 364
10.2 Trees 368
10.2.1 Finding a Good Tree 371
10.2.2 Pruning and Selection 379
10.2.3 Bayes Trees 383
10.3 Neural Nets 386
10.3.1 ‘Fitting’ a Good NN 388
10.3.2 Choosing an Architecture for an NN 393
Expanded Contents

10.3.3 Bayes NNs 394
10.3.4 NN Heuristics 397
10.3.5 Deep Learning, Convolutional NNs, and All That 399

10.4 Kernel Methods 405
10.4.1 Bayes Kernel Predictors 409
10.4.2 Frequentist Kernel Predictors 416

10.5 Penalized Methods 422

10.6 Computed Examples 429
10.6.1 Doppler Function Example 429
10.6.2 Predicting a Vegetation Greenness Index 433

10.7 Endnotes 443
10.7.1 Projection Pursuit 443
10.7.2 Logic Trees 445
10.7.3 Hidden Markov Models 446
10.7.4 Errors-in-Variables Models 447

11 Ensemble Methods 449
11.1 Bayes Model Averaging 454
11.2 Bagging 462
11.3 Stacking 471
11.4 Boosting 480
11.4.1 Boosting Classifiers 481
11.4.2 Boosting and Regression 486

11.5 Median and Related Methods 489
11.5.1 Different Sorts of “Median” 489
11.5.2 Median and Other Components 494
11.5.3 Heuristics 495

11.6 Model Average Prediction in Practice 497
11.6.1 Simulation Study 497
11.6.2 Reanalyzing the Vegout Data 507
11.6.3 Mixing It Up 518

11.7 Endnotes 519
11.7.1 Prediction along a String 520
11.7.2 No Free Lunch 522

12 The Future of Prediction 524
12.1 Recommender Systems 526
12.1.1 Collaborative Filtering Recommender Systems 526
12.1.2 Content-Based (CB) Recommender Systems 530
12.1.3 Other Methods 533
12.1.4 Evaluation 536

12.2 Streaming Data 537
12.2.1 Key Examples of Procedures for Streaming Data 538
12.2.2 Sensor Data 547
12.2.3 Streaming Decisions 551

12.3 Spatio-Temporal Data 556
12.3.1 Spatio-Temporal Point Data 559
12.3.2 Remote Sensing Data 562
12.3.3 Spatio-Temporal Point Process Data 565
Expanded Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.4 Areal Data</td>
<td>568</td>
</tr>
<tr>
<td>12.4 Network Models</td>
<td>570</td>
</tr>
<tr>
<td>12.4.1 Static Networks</td>
<td>572</td>
</tr>
<tr>
<td>12.4.2 Dynamic Networks</td>
<td>581</td>
</tr>
<tr>
<td>12.5 Multitype Data</td>
<td>585</td>
</tr>
<tr>
<td>12.5.1 'Omics Data</td>
<td>586</td>
</tr>
<tr>
<td>12.5.2 Combining Data Types</td>
<td>592</td>
</tr>
<tr>
<td>12.6 Topics that Might Have Been Here . . But Are Not</td>
<td>599</td>
</tr>
<tr>
<td>12.7 Predictor Properties that Remain to be Studied</td>
<td>600</td>
</tr>
<tr>
<td>12.8 Whither Prediction?</td>
<td>602</td>
</tr>
<tr>
<td>References</td>
<td>605</td>
</tr>
<tr>
<td>Index</td>
<td>635</td>
</tr>
</tbody>
</table>
Preface

This book grew out of a nagging dissatisfaction with the various schools of thought in statistics and their increasing disjunction. Each one – frequentist, Bayes, survey sampling, information-theoretic, etc. – has its strengths and weaknesses, and comparisons amongst their different approaches to inference has energized statistical thinking. This dynamic has only grown stronger over the last decade as more challenging data types have become commonplace. Moreover, in contrasting the techniques advocated by the different schools of thought on harder problems, such as working with big data, high-dimensional data, or complex data, the nagging doubts have only become more insistent. Otherwise stated, the less data (or other information) relative to the believed complexity of the data generator that is available, the more the modeling contributes to an analysis and therefore the more the differences in schools of thought, which largely rest on modeling, become apparent.

Concisely, the era of big data, whether high-dimensional, streaming, multitype or otherwise ‘big’, is forcing us all to rethink statistics and its philosophy. Questions about how to measure the distance between points in high dimensions have to be addressed since that is one version of the curse of dimensionality, likewise, questions of sparsity – when it holds, when it fails, and how to deal with it in either case – and questions of data sets that have information which is not extractable within the traditional formulation of a ‘random variable on a measure space’ or a valid sample from a well-defined population. In these contexts, this book is a small first step to reorganize some of what we know in order to focus on predictive structure, which is one of the few properties that cuts across all the new, exciting, developments challenging us and our field.

In our field, we have relied too much on our models by not assessing them as extensively as we should. We have not looked enough at their stability. We have not, as a rule, considered a sufficient number of alternative models to be sure that the model we used was reasonable. With few exceptions, we have not done sequential searches over modeling strategies to find a reasonable model, given a certain amount of data, and then modified it in view of getting more data. Also, we have not assessed the robustness of our inferences to our modeling strategies sufficiently. The present authors are as guilty of this as anyone else. In short, we have contented ourselves with the bromide that even if the model is wrong it may be useful, in the hope that if there is a true model (and here we argue that often there isn’t) we have found at least a part of it. However, that ain’t necessarily so.

This book is an attempt to focus more heavily on the data than the formalism and to focus more heavily on the performance of predictors rather than the fit or physical interpretation of a model or other construct. As a consequence, testing and estimation are given short
Preface

In fact, the general enterprise of inference by modeling, testing, and estimation seems premature until a lot more is known about a data generator than that it is described by a simple model that may be useful even when it’s not true. In reality, the situation is usually worse than that for conventional analysis because the inferences are generated from one data set and a pile of assumptions, often dubious. Granted, in the hands of capable statisticians with enough persistence, most schools of thought will yield useful inferences. However, such success reflects the insight and doggedness of the statistician more than the efficacy of the methods. Consequently, it is hoped that one effect of focusing on the data, here via prediction, will be to energize the debate about what the central goals of statistics should be and how to go about achieving them.

An idea that recurs throughout this book is the concept of a problem class based on the relationship between the data generator and a class of predictors. The emphasis is on predictors that do not correspond to a perfect model for the data generator. In particular, cases in which the model used is only an approximation, or in which there is no true model, are frequently considered.

This book is in three parts. Part I outlines a general approach to statistics based on prediction. No claim is made that it is complete, merely that it is an alternative to various established schools of thought and deserves more attention than it has received. It is based on the prequential (predictive sequential) ideas that emerged in the early 1980s from A. P. Dawid and M. West, amongst others. There are four chapters, outlining the importance of prediction, defining a predictive paradigm, explaining why modeling, while sometimes useful, is not as good an approach as prediction, and finally looking at some familiar predictors. The view here is also more general: other schools of thought are incorporated into the predictive approach by regarding them as techniques for generating predictors that may be tested and studied. Thus, other schools of thought are not ‘wrong’ so much as incomplete: one school’s techniques may not yield good predictors as readily as those of another.

Part II is a review of five major fields within statistics (time series, longitudinal data, survival analysis, nonparametrics, and model selection) from the predictive standpoint. The material is not new; the perspective on it is. The point of Part II is to demonstrate the feasibility of the predictive view: that it is a valid way to think about traditional branches of statistics and is computationally feasible. The five specific subfields were chosen because they are quite different from each other, suggesting the wide applicability of a general predictive view. They are also fields where the problems are so complicated that prediction is obviously important.

Part III is brings prediction up to the present. Starting with prediction in more contemporary model classes such as trees, neural nets, kernel methods, and penalized methods, it moves on to a chapter on ensemble methods, including Bayes model averaging, bagging, stacking, boosting and median methods. Even more than in previous chapters, computing is stressed to verify that the perspective advocated here is feasible. The final chapter is intended to bring predictive concepts to branches of statistics that have either recently emerged or recently changed character through, e.g., big data, changes in data collection, or new applications that have made prediction more important. Having dealt with terrestrial matters, the last chapter also indulges in some moon-gazing, speculating on which problems become more interesting when a predictive view is taken.
Preface

On the one hand this book does not require much mathematical background; a strong, determined MS student in statistics, mathematics, engineering, computer science, or other highly quantitative field should be able to follow the formal derivations. On the other hand, the book is primarily conceptual and so makes demands on the prospective reader that likely require more sophistication than a typical MS student, even a strong one, would have. Thus, our primary target audience is mid-career PhD students, practicing statisticians, and researchers in statistical fields. The authors sincerely hope that, whether or not these audiences agree with the perspective expressed in this book, they will find this perspective worth their time to understand.

For those interested in examining the R code or data used for the many examples in this text, please visit the catalog page on the Cambridge University Press website:

www.cambridge.org/predictivestatistics

This page includes a link to the github repository containing all relevant R code and data. The repository is structured so that each chapter has a branch. All code is provided under GNU Public License 3.0.

As with every book, there are people who should be thanked. First, all the people who supplied the data sets we used for examples. Second, all the people who, over the past four years put up with us obsessing over this book; we apologize for endlessly bending your ear. Third, Diana Gillooly of Cambridge University Press, with whom we had many conversations about the content, organization, and orientation of this book. Fourth, those colleagues who encouraged us in our folly. (You know who you are!) We forbear from mentioning names for fear they will regret encouraging us.

Finally, we have consistently tried to be engaging and sometimes provocative. Of course, some people will disagree with us and some errors may remain despite our best efforts. We are reminded of the (possibly mythical) story of a French physicist who, when asked about a colleague’s work, pondered a few moments and finally responded: ‘It’s not even wrong.’ In the spirit of that witticism, we apologize in advance for any errors that remain, whether technical or philosophical, hoping that they will at least be interesting.

Bertrand S. Clarke
Jennifer L. Clarke