Index

Locators in bold text signify figures

action. See also PA cycle, perception and intention, 144
and language, 178
cognit, 72, 136, 177
constancy, 10–11, 44
future, 126, 141, 178
syntax of, 181
teleonomy, 46
ADHD syndrome, 128, 162
affordance
and language, 164
definition of, 47
language as supreme maker of, 56
agapé love, 208
aging. See development
Ainslie, George, 222
amygdala. See also limbic system
as emotion center, 32, 113, 114
as part of the ancient limbic system, 50, 67, 196
for memory acquisition, 67
in decision-making, 130
animals
and trust, 196–197
attention in, 144
brain structure, 31, 31, 50, 136
“language” in, 55, 158, 168, 174
planning in, 54–55
prediction in, 159
rewards, 120
sensory deprivation in, 49, 205, 206

aphasias. See also problems
Broca’s, 171
conduction, 172, 173
frontal dynamic, 174
semantic, 171, 173
art, 151–152, 225. See also music, culture
association. See also hierarchy
and forgetfulness, 70–71
and information addressing, 83
and language, 182–183
in cerebral cortex neural network, 9, 33, 63–65, 64, 74–75
attention. See also consciousness
as mother of all cognitive functions, 163–164
aspects of, 143–144
cognitive control of perceptual, 91
disorders, 116, 162
selective, 143

Bacon, Francis, 81
Barsalou, L. W., 97
basal ganglia, 50, 60, 225. See also synaptic connections
Bayesian logic, 52, 101
Bernstein, N., 92
brain
as constraint on liberty, 25–27
as open system, 29, 52

261
Index

brain (cont.)
 pathology, 208–218
 structure, 31, 31, 32–35, 34, 37, 54
Broca, Paul, 171, 178, 181
Broca’s aphasia, 171, 173
Brown, W., 6

categories
 for sensory order, 44
 higher values, 198–199, 205
central executive cerebral structure, 16–18
cerebral cortex
 compared to the internet, 83–86
 development, 35–41, 38, 40, 62, 75
 guiding conscious attention, 18
 information choices in, 77–82
 in PA cycle, 92–97, 94
 inputs to, 97–102
 internalization of history in, 6
 not needed for automatic and reflex behaviors, 18
 plasticity of, 19
Charcot, J., 186
choice
 and liberty, 58
 in cerebral cortex, 77–82
 of speech, 185–187
Chomsky, Noam, 167
Christie, Agatha, 142
Churchland, Patricia, 194
civilization. See culture
Clark, A., 97
code. See cognits
cognition. See also language
 and speech, 157–158, 167, 179
cognits. See also information action, 136, 177
 as base neural level, 13–15, 37
 executive, 18, 60, 72–74, 73, 135–136
 heterarchical, 76–77, 93
 linguistic, 178, 180
 network structure of, 6, 62–67, 64
 perceptual, 18, 72, 73
 compatibility, 4–5
complexity
 essential, 209–210
 of language determinants, 187
 of neural networks, 65–66
 of PA cycle, 46–47
computers
 altering PA cycle, 224
 internet, 82–86
 language, 175
conception planning phase, 139–140
conduction aphasias, 172
connective structures. See synaptic connections
consciousness. See also unconscious process, attention
 and freedom, 22, 82
 as epiphenomenon of activated cortex, 111
 in internal cognitive deliberations, 100
constraints. See also control
 on liberty, 25–27, 51, 123
 social, 192
consumer credit, 128
corollary discharge, 91
corpus callosum, 35
cortex
 knowledge storage as relational code in, 69
 myelation as aging occurs, 39–41, 40
“cortical choice”. See also PA cycle
creativity. See also memory of the future
 and language, 164–170
 and reusing old knowledge, 146–147
 as mother of progress, 146
 internal drive in, 147–148
 process of, 148–151
 synaptic connections in, 148
cross-temporal planning contingencies, 140–141
culture. See also music, art
 and PA cycle, 223–224
 and protection of freedom, 219–222, 225
definition of, 218–219
effects of delay discount on, 224–225
Damasio, A. R., 103, 128
Darwin, Charles, 23, 220
decision-making. See also memory of the future and PA cycle, 5–6
definition of, 126–127
inputs to, 127–134, 196
neural foundation of, 98, 130, 132, 134–137
temporally staged, 5–6, 48–53
degeneracy, 11, 44
delay discount, 117, 120–123, 202–203, 222–223, 224–225. See also control
deliberate thinking, 99–100
demon of Laplace,” 3
Dennett, D., 4–5, 191
depressive/obsessive syndromes, 212–213
determinism
as beacon for cognitive neuroscience, 1–2
problems with, 7–11, 52
types of, 3–4
development
language, 163–164, 181–182, 206, 207
of cerebral cortex during lifetime, 35–41, 38, 40, 62, 75
sensory, 20
sensory deprivation in, 205–206
discrimination, 44
disorders of the brain, 210–215
dopamine, 113–114, 117, 213
Dretske, Fred, 6
drug addiction, 116–117, 213–214
Edelman, G. M., 42, 44
elan vital, 3
embodied cognition, 96
emotional PA cycle. See also limbic system
and the amygdala, 32, 113, 114
cognit input, 18
memory, 69, 178, 196
process of, 102–103, 104
reward axis, 199–200
empiricist philosophy, 98, 171, 201
environment
external, 72–74, 73, 102–103, 104, 196
internal, 6, 89, 98–102, 146, 201–202
epiphenomenon of consciousness, 111
Erikson, E., 207
essentially complex system, 209–210
ethical cognits, 27
evolution. See also natural selection and language, 174, 176
and variance, 9, 43
cerebral cortex, 15, 43
neocortex, 32–35, 34
prefrontal cortex, 24–25, 28–29, 33, 37–39
randomness and variance in, 8
exclusion, 143–144
executive cognits. See also perceptual cognits
emotional inputs to, 18
in decision-making, 135–136
in frontal cortex, 15, 72–74, 73
expected values, 201
“explanation of the principle,” 7
extended mind, 97
external inputs
from senses, 98
from trusted people, 196
focus, 143–144
forgetfulness, 70–71
Frankfurt, H., 4–5
freedom. See also responsibility, liberty and consciousness, 22, 82
and inputs to cortex, 97–102
and language articulation, 169–170
as a result of evolution, 30
hemicycle of, 107–111, 109, 185–186
of information choices in cerebral cortex, 77–82
protection of, 219–222, 225
free will
enhanced by unconscious knowledge, 21–22
importance of cortical connectivity in, 37–39
not relevant to neuroscience, 144, 192, 216, 217
temporally staged decision-making, 5–6
Freud, Sigmund, 152, 186
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>frontal dynamic aphasia, frontal lobe disorders, Fukuyama, F., 178, 214–215, future, action, 126, 141, 178, rewards, 201, future memory. See memory of the future</td>
</tr>
<tr>
<td>193</td>
<td>Gage, Phineas, 203, 215, gambling, 116, 117, 128, game theory, 8, genetic memory. See phyletic memory</td>
</tr>
<tr>
<td>172</td>
<td>Geschwind, Norman, 172, Gibson, J., 56, Glancy, G. D., 212, goals. See planning</td>
</tr>
<tr>
<td>203</td>
<td>Gould, S. J., 36, 43, gratification (delay of), 120–123, 128, 202, guilt, 212–213</td>
</tr>
<tr>
<td>117</td>
<td>Haeckel, Ernst, 35, happiness. See trust</td>
</tr>
<tr>
<td>222</td>
<td>Hayek, F. A., 7, 154, 209, 210, Hesse, W. H., 89, heterarchical cognits, 76–77, 93, heterochrony, 36, hierarchy. See also association of cognits (cortical), 73, 76–77, 93–95, 94, of linguistic cognits, 177, 180, higher values categories of, 198–199, 205, center in brain, 203–205, development, 207, expected, 201, internal control mechanism, 201–202, theory-of-mind, 200, hippocampus. See also limbic system as part of the ancient limbic system, 32, 50, for memory acquisition, 32, 67, history memory research, 125–126, of localized cognition, 6, 60–62, of PA cycle, 90–91, of sensory stimulus, 98, Hobbes, Thomas, 4, Holmes, Oliver Wendell, 77, homeostasis, 19, 87–90, hyperfrontality, 96, hypotalamus. See also limbic system and pleasure center, 113–114, as organ of homeostasis, 88–90, as part of the ancient limbic system, 50, implementation planning phase, 140–143, information. See also cognits addressing, 83, choices in cerebral cortex, 77–82, Ingvar, David, 96, 125, inhibitory control, 143, institutions as constraint on liberty, 27, 123, as way to prevent conflict between individual and society, 23, intention, 144, internal environment inputs, 98–102, 196, internet, 82–86, intuition. See also trust and decision-making, 98, and natural law, 220, importance of, 198, unconscious process, 79, Iowa Gambling Task, 117, Kahneman, D., 111, 183, 201, Kandel, Eric, 152, Kandell, Eric, 152, Kany, Robert, 5, 8, Kant, Immanuel, 3, Klimt, Gustav, 152</td>
</tr>
</tbody>
</table>
knowledge. See also memory
reusing old, 146–147
unconscious, 21–22
within cognits, 15
Köhler, W., 55
Kokoschka, Oskar, 152

language. See also neurolinguistics,
cognition
and creativity, 164–170
and deliberate thinking, 99–100, 158
and freedom, 47, 158, 169–170
and future planning, 25, 131
and prediction, 159–164, 167–169
based in the cerebral cortex, 158–159, 183–184
development, 35, 163–164, 181–182, 206, 207
relational code of, 78–79, 83–86, 167
Lashley, Karl, 56, 61, 175, 178, 181
law. See also jurisprudence
natural, 23, 175–176, 219–222
rule of, 130
Lebadea principle, 160–162
Lenneberg, Eric, 206
libertarian philosophy, 3, 118
liberty. See also freedom
and freedom, 2
and homeostasis, 87
and money, 117–123
and territory, 103–107
constraints on, 23, 25–27, 51, 123
enhanced by unconscious
knowledge, 21–22
exclusively on cerebral cortex
engagement, 111
five major neuroscience hurdles, 7–23
private versus public, 187–188
rewards in, 112–123
to act as free causal agent, 1–2, 58
limbic system. See also orbital
prefrontal cortex, motor system,
hypothalamus, hippocampus,
emotional PA cycle, amygdala
and internal drive, 147–148
and reward system, 113–114
and system-1 thinking, 112
in PA cycle, 49–50, 92

inputs to decision-making, 127, 130,
132
pathology, 115–116
linguistics. See language
Luria, Alexander, 160, 174
Marina, J. A., 147
maturity
age-related neural constraints on,
39–41
prefrontal cortex, 74, 136, 169,
183–184
McNaghten rule, 216, 217
memory. See also knowledge
and knowledge being one concept,
61–62, 65, 72
association in, 63–65, 64
phyletic, 48–49, 51, 54, 72–74, 73,
87, 180
working, 91, 135, 136, 141, 142, 181
memory of the future, 24–25, 46,
125–126, 160, 176–182, 225. See
also planning, creativity
Mill, John Stuart, 63, 77, 193
mirror cells, 196–197
Misztal, Barbara, 193
money
as reward, 117–123, 128
in decision-making, 128
Monterosso, J., 222
moral sense. See natural law
motor system. See also limbic system
and executive cognits, 60, 72, 75
to sensory system against traffic, 75,
90
Murphy, N., 6
music, 149–150, 152–153, 225. See also
culture, art
myelination
for brain connectivity, 35, 39
individual development of, 36–41,
38, 40, 176
nativist linguists, 171, 175–176
natural law, 23, 175–176, 219–222
natural selection, 41–47, 175–176,
225. See also evolution
neocortex
evolution of, 32–35, 34
system-1 and 2 thinking, 112, 116
neocortex

neural networks
 cognitive model, 59–62, 68–77, 73
 complexity of, 65–66
 relational code, 69, 78–79
neuroeconomics, 117–123, 127, 225. See also rewards

neuroethics, 215–216
neurolinguistics. See also language
 aphasias in, 171–174, 173
 philosophy of, 171
 principles of, 170–171, 182–186
 universal grammar (UG) in, 174–182
neuronal group selection (TNGS), 42–43

neuroscience
 and jurisprudence, 216–217
 cognitive, 1–2, 12, 58
 of rewards, 113–116, 115
 philosophy, 3, 8, 9, 171
 relevance of free will to, 146, 192, 216, 217
newborn. See also teenager brain
development
 brain structure, 37, 54
 sensing in, 20, 74
 trust, 194
nodes (cognitive), 68
Noé, A., 97

obsessive-compulsive disorder (OCD), 212–213
ontogeny, 35–41
open system
 human brain, 29, 52
 hypothalamus, 90
orbital prefrontal cortex. See also limbic system
 and ADHD syndrome, 128, 162
 and antisocial behavior, 26, 203, 215
 and emotion, 196
 “organ of liberty.” See prefrontal cortex
Ortega y Gasset, José, 6, 92, 107, 108, 152, 191
oxytocin, 194

PA. See perception/action (PA) cycle

percept. See cognits
perception. See also perception/action
 (PA) cycle, action
 as a choice, 79–80
 definition of, 20, 44
 history embedded in, 80–81
perception/action (PA) cycle. See also perception, action
 and alternative choices to act on, 79–80, 98
 and temporal decision-making problems, 6, 17
 and territory, 103–107
cortical stages of, 9, 46–47, 92–97, 94
hemicycle of freedom in, 107–111, 109
history of, 90–91
inputs to prefrontal cortex, 97–102
internal feedback, 146, 201–202
linguistic, 180–186
rewards of, 112–123, 115
sensing-emoting cycle in, 102–103, 104
perceptual cognits, 15, 18, 72, 73. See also executive cognits
philosophy
 and free will, 3–6, 144
 empiricist, 80–81, 98, 118, 171
 libertarian, 3, 118
 neuroscience, 3, 8, 9, 171
 reductionist, 1–2, 11–15
phyletic memory. See also phylogeny
 and language, 180
 evolution, 48–49, 54
 homeostasis as, 87
 motor, 72–74, 73
 sensory, 72–74, 73
phylogeny, 35–36. See also phyletic memory
Piaget, J., 207
Pinel, Philippe, 216
piriform cortex, 32
pleasure center, 113–114, 117
Poincaré, H., 5
Popper, K., 154
posterior cortex (PTO), 33, 34. See also prefrontal cortex, hemicycle of freedom
preadaptive cognition
during rest, 96
necessary for long-term planning, 88
out of prefrontal cortex evolution, 24–25
prediction
and command of language, 169
definition of, 159
Lebadea principle in, 160–162
out of prefrontal cortex evolution, 24–25, 29–30, 42
self, 160
prefrontal cortex. See also posterior cortex, hemicycle of freedom
and irresponsible behavior, 214–215
and language, 159, 183–184
as neural transaction broker, 9–10
as supreme enabler in PA cycle, 16–18, 45, 46–47, 158
evolution, 24–25, 28–29, 33, 34, 37–39
of a nation, 222–225
Pribram, Karl, 186
problems. See also aphasias
empiricist philosophy of the mind, 80–81
in temporal decision-making, 5
localized cognition, 60–62
of prefrontal cortex as central executive center, 17
with delay discount, 122–123
with recapitulation, 35–36
prospective memory. See memory of the future
psychosis, 211–212
PTO. See posterior cortex

qualia. See cognits

Rachlin, H., 128
reasoning. See deliberate thinking recapitulation, 35–36
recursion
and aphasia, 174
in language, 167–169, 174

reductionist philosophy
as major neuroscience hurdle, 11–15
beacons to guide cognitive neuroscience, 1–2
Regehr, C., 212
relational code
in both internet and cerebral cortex, 12–13, 83–86
in cerebral cortex neural network, 69, 78–79
language as, 164–166
responsibility. See also freedom and brain disease, 208–218
and social order, 192, 198
development of, 207–208
reward axis, 113–116, 115, 199–200, 203
rewards. See also neuroeconomics
as goals, 112–123, 115
future, 199–201
in decision-making, 127, 129–130
money, 117–123
Rizzolatti, G., 196
rule of law, 130

Schiele, Egon, 152
schizophrenia, 211–212
science (and creativity), 153–154
self
prediction, 160
sense of, 22–23, 49, 79
semantic aphasia, 171, 173
semantic memory, 63, 99
sensory-emoting cycle, 102–103, 104. See also limbic system
sensory cortices. See limbic system
sensory memory. See phyletic memory
sleep, 96
Smith, Adam, 193
social order
and culture, 218–225
and trust, 192–198
values and, 198–208
speech. See language
Sperry, Roger, 13
St Augustine, 208
substance abuse. See drug addiction
superior longitudinal fasciculus, 35, 73, 77
synaptic connections. See also basal ganglia
and language, 175–176
development of, 75
evolution, 35
in creativity, 148
individual development of, 36–41, 38, 40, 62
strength of in cognitive networks, 14, 52, 68–71, 100
synchronous convergence, 63–65, 64
syntax, 174, 175–176, 181
system-1/2 thinking, 112, 183
tenager brain development, 163–164, 225. See also newborn
teleokinetcs, 89–90
teleonomy, 46
temporally staged decision-making, 5–6, 48–53
territory, 103–107
Teuber, Hans-Lukas, 91
theory-of-mind, 200
trust. See also intuition
as pillar of responsibility, 119–120
importance of, 195
in animals, 196–197
individual development of, 193–194, 207
lack of, 195
Tversky, A., 201
Uexküll, J. V., 89–90, 202
UG. See universal grammar
ultimate responsibility (in decision-making), 5
unconscious process. See also consciousness
and creativity, 152
and decision-making, 132
and perception, 44
guide of most behavior, 20, 79, 98
intuition in, 79
universal grammar (UG), 174–182
values (higher)
categories of, 198–199, 205
center in brain, 203–205
development, 207
expected, 201
internal control mechanism, 201–202
theory-of-mind, 200
values (PA cycle), 129, 217–218, 220, 223–224
variance, 8, 9, 43
Vygotsky, L. S., 207, 208
Wernicke, C., 171, 181
“white matter”. See myelination
working memory, 91, 135, 136, 141, 142, 181
zone of proximate development (ZPD), 207–208
ZPD. See zone of proximate development