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An Introduction to Next-Generation
Biological Platforms

VIRGINIA MOHLERE, WENTING WANG,
AND GANIRAJU MANYAM

1.1 Introduction

When Sanger and Coulson first described a reliable, efficient method for
DNA sequencing in 1975 (Sanger and Coulson, 1975), they made possible
the full sequencing of both genes and entire genomes. Although the method
was resource-intensive, many institutions invested in the necessary equipment,
and Sanger sequencing remained the standard for the next 30 years.

Refinement of the process increased read lengths from around 25 to almost
750 base pairs (Schadt et al., 2010, fig. 1). Although this greatly increased
efficiency and reliability, the Sanger method still required not only large equip-
ment but also significant human investment, as the process requires the work
of several people. This prompted researchers and companies such as Applied
Biosystems to seek improved sequencing techniques and instruments. Starting
in the late 2000s, new instruments came on the market that, although they
actually decreased read length, lessened run time and could be operated more
easily with fewer human resources (Schadt et al., 2010).

Despite discoveries that have illuminated new therapeutic targets, clarified
the role of specific mutations in clinical response, and yielded new methods
for diagnosis and predicting prognosis (Chin et al., 2011), the initial promise
of genomic data has largely remained unfulfilled so far. The difficulties are
numerous. The functional consequences of individual mutations are not always
clear. In fact, it is often logistically challenging to determine which discovered
mutations make a critical contribution to disease and which are due merely to
genetic instability and confer little functional effect.

In part, these difficulties lie in the methods used to acquire data.
Microarray plates started to replace the labor-intensive Sanger method in
the mid-1990s (Schena et al., 1995). These plates consist of many small
wells that contain probe sets (e.g., up to 54,000 on the Affymetrix GeneChip
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[www.affymetrix.com]), or stacks of bases. The target sequence is fluorescently
labeled and washed onto a chip; levels of matching sequences are then analyzed
by a laser, and the signal from laser indicates the amount of gene expression.
Depending on how the data are measured and then analyzed, several metrics
can be determined, including the concentration of a particular gene’s mRNA
transcript at a discrete point in time; differences in expression of the same gene
among many samples; or differences in phenotype, reaction to a particular
treatment, or prognosis that arise from differences in expression levels among
samples (McGee and Chen, 2005).

The ability to place large numbers of probes on one chip, and later the
availability of standard commercial microarray chips, greatly decreased the
cost of expression assays. They are not, however, without their drawbacks.
For example, to construct the probe sets on the microarray, the genome of the
organism studied must be well characterized. Also, microarray data are obtained
from sequences hybridized to the probes stuck to the plate, and this process
can introduce errors, not only because of unreliable probes but also because
of cross-hybridization of imperfectly matching target sequences. Methods that
require samples to be amplified by polymerase chain reaction (PCR) might
introduce unavoidable errors not in the original sample, and these are not easy
to determine. Also, because microarray data are gathered by measuring the
fluorescence signal, both very rare and very common signals (those that are
very faint and those that are very bright) near the detection limits of the assay
at either end cannot be measured accurately (McCormick et al., 2011).

To overcome these limitations, research has continued to find more efficient
ways to quantify biomolecular data. This has given rise to next-generation
sequencing (NGS), also called high-throughput sequencing. These methods
measure single molecules of DNA or RNA using methods, such as nanopores,
described later in this chapter. Such technologies aim to overcome the limi-
tations of previous methods by generating millions of short reads to provide
detailed views of cellular activity at nucleotide resolution. “Short,” in this case,
means that sequences that are generally read are 18–25 nt long. This length
serves two purposes: first, it is easier and cheaper to gather shorter sequences;
second, many small DNA and RNA elements are known to be within this size
range, so they will be captured at this length (McCormick et al., 2011). These
reads are then assembled into longer sequences.

However, using short sequences runs the risk that each read might map to
more than one site in a given genome. To ensure that the reads are generated
with good quality, many copies are run with slightly overlapping ends. The
number of repeats required to ensure correct mapping is called “coverage,” and
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An Introduction to Next-Generation Biological Platforms 3

experience has indicated that the convergence between accuracy and efficiency
occurs at about 28–30× coverage (McCarthy et al., 2012).

The direct assessment enabled by NGS will not only reduce some kinds of
introduced sequencing errors by methods such as PCR, but also provide infor-
mation about catalysis and DNA processing that might otherwise be masked by
interim amplification steps (Schadt et al., 2010). Importantly, NGS techniques
can quantify the abundance of molecules based on the read count, or so-called
digital signal, in contrast to the “analog signal” measured by array techniques.
Future enhancements of these methods also hold the potential to increase read
length into thousands of bases and to decrease the time to results to mere hours –
both of which would also decrease the overall cost.

Each platform of NGS data – whole genome, miRNA, methylation, and so
forth – represents a different kind of data and is quantified differently. One of
the goals of NGS is to combine many platforms. The goal of this volume is to
provide integrated models that can assess large sets of diverse biological data
and still provide meaningful results.

The major NGS platforms include the following:

� The epigenome: changes in transcription that do not affect the original DNA
strand, such as methylation and histone changes

� The genome: the entire DNA sequence
� The exome: only genes transcribed by RNA
� The transcriptome: RNA-based platforms and those assessing proteins

Examples and detailed descriptions of some platforms are presented in the
following sections. Despite the differences in the type of data produced by
each of these platforms, given that they are all single-molecule–based, the form
of the data are often largely the same (McCormick et al., 2011). These NGS
data are often described in four levels. Level 1 is the raw data file. Level 2
data have been processed and normalized – that is, images have been converted
to “reads,” or sequence fragments. Poor-quality signals have been removed,
and sequences have been mapped by aligning them to a reference sequence.
Level 3 data have been interpreted, and level 4 data have been summarized.
Unfortunately, there are few standards for processing high-throughput data,
which of course leads to the risk of false comparisons if similar data have been
analyzed and interpreted differently (Martens et al., 2011). One of the purposes
of this volume is to suggest analyses that might lead to such standardization.

Like previous sequencing methods, NGS has its own caveats. For example,
nanopore technologies sometimes result in a nucleotide becoming stuck as it
passes through the pore and thus being counted by the scanner more than once
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(Schadt et al., 2010). In other methods, a reagent may not bind to every target
sequence, decreasing the signal strength. All NGS techniques produce short
sequence reads that might map to more than one sequence of the reference
genome, and multiple sequencing runs are needed to minimize this effect. This
need for multiple runs increases the time and cost and remains a limitation of
NGS. Additionally, NGS technologies result in enormous data sets that require
a substantial investment in data storage and both computational and human
effort to manage and analyze the information and derive meaningful results
(Chin et al., 2011). These challenges drive the need for the analytical methods
described in this volume.

1.2 The Biology of Gene Silencing

Gene silencing describes the process of inhibitory gene expression regulation
at various levels: the genome, epigenome, and transcriptome. DNA regula-
tory elements and transcription factors control gene expression at the genome
level. DNA methylation inhibits gene expression via epigenome, whereas RNA
interference is used to repress gene expression in the transcriptome. This sec-
tion describes the molecular biology of repression through DNA methylation
and RNA inference, as these processes are often used to elaborate other high-
throughput methodologies in this volume.

1.2.1 DNA Methylation

DNA methylation is a normal biological process that plays an important role in
the regulation of gene transcription. DNA methylation is an epigenetic change –
one that affects gene expression but not the gene sequences. Epigenetic changes
are often very stable (long-lasting) and can be inherited; a particular site can
even be methylated in one cell and unmethylated in another (Das and Sin-
gal, 2004; Jabbari and Bernardi, 2004; Krueger et al., 2012). However, these
changes are also reversible, making them attractive targets for therapy. Epige-
netic changes have been found in many diseases and development processes,
including cancer, viral infection, and developmental abnormalities such as
X-inactivation (Das and Singal, 2004).

The DNA methylation process is a chemical change that adds a methyl
group (CH3) to the carbon 5 position of a cytosine pyrimidine ring or to the 6
position of an adenine purine ring. These mostly occur in the cytosine sequence
identified by 5′CG3′. This is called the “CpG dinucleotide,” because most CpG
sites (in which a cytosine-C is located next to a guanine-G in the series of
bases) are separated by one phosphate (p). This designation differentiates the
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CpG – in which C and G are side by side – from the CG base pair (Lander et al.,
2001). Among the 16 possible nucleotide combinations, the CpG dinucleotide
should occur around 6% of the time, but its rate of occurrence is only a fraction
of that expected rate (5%–10% of it) (Antequera and Bird, 1993). This low
frequency is thought to occur because cytosine, when it is methylated, mutates
easily, and the mutations are often identified and repaired (Daura-Oller et al.,
2009). Thus CpG islands tend to cluster in unmethylated regions of the genome.
On average, these occur about every 100 bp (Antequera and Bird, 1993; Cross,
1995).

DNA methylation is powered by enzymes called DNA methyltransferases.
At present, three families of DNA methyltransferases have been described
in mammals. During embryonic development, DNA methyltransferases and
mechanical regulators (e.g., methylation centers) strictly control methylation,
which ensures that genes are expressed or silenced to drive correct cell differ-
entiation (Laird, 2010).

The outcome of DNA methylation depends on its location: methylation in
the promotor region of a gene always leads to decreased expression. In contrast,
methylation in the transcribed region can have various effects (Laird, 2010). The
actual mechanisms of the repression elicited by DNA methylation can involve
either interfering with the binding sites of specific transcription factors (e.g.,
nuclear factor–κB, a protein found in almost all cell types) or direct binding to
proteins that prevent transcription. Some types of cancer show characteristic
patterns of DNA methylation disruption. Aberrant DNA methylation that con-
tributes to cancer development falls into two broad categories: hypomethylation
and hypermethylation.

Hypomethylation has been found in numerous types of solid tumors, such
as hepatocellular, cervical, and prostate cancer. It has also been noted in some
forms of cancer affecting the blood-forming elements. The level of hypomethy-
lation often increases with later progression of disease. Congenital hypomethy-
lation is characterized by facial abnormalities, immunodeficiency, and insta-
bility of chromatin, the bundle of DNA and protein inside a cell nucleus. A
decreased methylation rate is thought to enable the expression of some onco-
genes, such as H-RAS, which is associated with bladder cancer and other types
of cancer (Parikh et al., 2007; Kompier et al., 2010).

Far more common is hypermethylation. There are several pathways that
protect against “runaway” methylation – chromatin blocking DNA methyl-
transferase, demethylation triggers in the cell, the timing of replication, and
even transcription itself (Clark and Melki, 2002). These protective measures
can be overcome, however, usually as a result of gene mutation. Genes known
to be susceptible to changes that result in hypermethylation are involved in
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regulating the cell cycle, DNA repair, drug resistance, angiogenesis (the forma-
tion of blood vessels), and metastasis – in other words, ubiquitous genes with
critical functions (Das and Singal, 2004).

Different cancer types frequently show hypermethylation in type-specific
genes, such as steroid receptor and cell adhesion genes in breast cancer (Yang
et al., 2001). Hypermethylated genes have been discovered in association with
leukemia, lung cancer (for which more than 40 are known; Tsou et al., 2002),
and prostate cancer, among others. Ongoing research indicates that hyperme-
thylation is associated with a broad range of disease characteristics and may be
useful in predicting disease outcomes. Methylation is an active enough branch
of research that a number of methods have been developed to study it. Some
of the earliest methods were based on gel blotting and Sanger methods. Later,
array-based techniques were created using methylation probes on chips. This
allowed multiplexing of samples and brought methylation studies into the high-
throughput era. These methylation-specific probes can now be used with NGS
instruments for true single-molecule sequencing (see later; Laird, 2010).

1.2.2 RNA Interference

RNA interference (RNAi) is a process of gene silencing that occurs after gene
transcription. The identification of RNAi has greatly advanced the study of gene
function, and the mechanics of the process are being investigated for their ther-
apeutic potential. Long strands of double-stranded (ds) RNA complementary
to specific mRNA were found, first in plants and then artificially in mammalian
cells, to silence genes via the action of very short segments (Fire et al., 1998;
Elbashir et al., 2001). That the process occurs among plants, fungi, and ani-
mals indicates that RNAi is an ancient feature of gene regulation (Bagasra and
Prilliman, 2004). RNAi is thought to be a natural protection system against
virus-mediated gene expression and mutation (Malone and Hannon, 2009).

Broadly speaking, RNAi occurs in two steps. dsRNA is cut by the Dicer
enzyme into short components between 21 and 25 nt in length, each of which
has a 5′ phosphate group and 3′ overhangs of about 2 nt. The strand that is
complementary to the mRNA target is called the guide strand, and the other
is the passenger strand. The resulting fragments are then delivered by Dicer
to the RNA-induced silencing complex (RISC), a mix of enzymes that further
processes the fragment, separates the guide strand from the passenger strand,
and directs the guide strand to bind with the mRNA target. This binding stops
gene transcription, “silencing” the expression of the gene. When RNAi was
first described, it was hoped that the process would prove to be a powerful
therapeutic tool. However, this has not proved to be the case, for reasons
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discussed later. It remains, however, a highly useful method for performing
genetic manipulations and studying gene function (Berger and Randall, 2010).

Several molecules are known to associate with RISC and trigger RNAi:
small interfering RNA (siRNA), microRNA (miRNA), and piwi-interacting
RNA (piRNA) (Malone and Hannon, 2009; Sakurai et al., 2011). Each of
these silences gene expression in a different way. piRNA is a relatively newly
discovered small RNA about which little is known (Esteller, 2011). The features
of siRNA and miRNA are described next.

siRNA

Small interfering RNA (siRNA) was first described in 1999 and was subse-
quently found to be about 21 nt long (Hamilton and Baulcome, 1999). siRNA,
a product of RNA interference, plays an important role in gene silencing.
siRNAs are produced from a dsRNA that has been cleaved by Dicer. These
approximately 21-nt siRNA fragments, still in double-stranded form, are bound
to RNAi nuclease (part of RISC). This complex is then catalyzed, the guide
and passenger strands are split from one another, and the resulting siRNA is
ferried by RISC to its target string (Bagasra and Prilliman, 2004). The siRNA
sequences match perfectly (are homologous) to the target sequences. This sug-
gests that siRNAs would be strong agents of gene repression, but this has
not been demonstrated. The siRNA molecule is negatively charged, which con-
tributes to the molecules being subject to breakdown by nucleases, its clearance
by the kidneys, and “off-target silencing,” or the silencing of genes other than
the target. Off-target silencing occurs when the central region (usually 2–8 nt
long) matches sequences in more than one gene (Berger and Randall, 2010).
There is also evidence that siRNA inhibition does not last past transcription,
making its gene-silencing effects short-lived (with a half-life of only min-
utes). These shortcomings are difficult to address. Some studies have shown
that chemically modifying the sugar regions of siRNA molecules can reduce
off-target silencing in individual sequences; however, work remains to find a
standardized method to solve the problem. Such modifications also increase
the stability of siRNA in serum, delaying its breakdown (Jackson et al., 2006;
Watts et al., 2008; Gao et al., 2011).

Other limitations of siRNAs in therapeutic use concern the mode of siRNA
delivery to cells and the breakdown of siRNA by the immune system. The most
widely studied method of insertion of siRNA sequences uses a viral vector. This
can stimulate the immune system of the cell, which then degrades the siRNA
and prevents gene silencing (Gao et al., 2011). New delivery systems are under
investigation to try to bypass immune stimulation. One such method uses
liposomes, or cellular components coated in lipids, which can encase drugs
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or other molecules and cross cell membranes without stimulating immunity
(Guo et al., 2010; Gao et al., 2011). However, the use of liposomes can result
in other forms of toxicity, such as cell contraction and inhibited mitosis, so
more research is needed (Stewart et al., 1992). The relatively new field of
nanotechnology holds promise in enabling efficient siRNA delivery systems,
such as nanospheres, carbon-fiber nanotubes, and magnetized nanocrystals
(Katas et al., 2009; Ladeira et al., 2010; Lee et al., 2010; Wang et al., 2010).
Work is also being done that attaches peptides specific to certain receptors
to siRNA molecules to improve their specificity and increase the half-life of
the siRNA (Dassie et al., 2009; Guo et al., 2010). Despite the unexpected
difficulties in using siRNA in the clinic, it remains an active area of research.
Larger data sets and more effective algorithms to predict siRNA activity are
anticipated to provide the keys to these challenges.

miRNA

Like siRNA, microRNA (miRNA) is a small molecule, usually about 22–
24 nt in size. miRNA is a post-transcriptional regulator that acts to repress the
translation of a protein, degrade messenger RNA (mRNA), or silence a gene.
So far, approximately 15,000 miRNAs are known (Ladomery et al., 2011).
miRNAs have been found in animals, plants, and viruses and are ubiquitous
among all animals with bilateral symmetry, which proves the importance and
antiquity of these molecules in gene regulation (Chen, 2010). The process
of miRNA formation is different from that of siRNA. When a palindromic
sequence of bases occurs (often in the 3′ untranslated region [UTR]), the
molecule can fold up and stick to another, creating a stem, with the bases
between the palindrome regions making a loop at the top (a “hairpin” shape).
The stem is then cut from the RNA strand, and the Dicer enzyme attaches to
the stem and carries the miRNA to RISC, as in siRNA processing. However,
unlike siRNA, the unfolded (or “mature”) miRNA does not accomplish gene
silencing by attaching to coding sequences. Instead, it turns off genes through
one or more of the following mechanisms: (1) promoting mRNA decay, (2)
inhibiting protein translation, or (3) directing mRNA to move to parts of the
cell where it will be broken down (Cannell et al., 2008; Bartel, 2009; Beezhold
et al., 2010). These mechanisms are poorly understood and are the subject of
much research.

The function of miRNAs is another active research topic. miRNAs are not
intrinsically harmful; they are known to participate in many different cellu-
lar processes, including stem cell development, cell differentiation, cell cycle
regulation, apoptosis, and transformation (either normal or malignant). All of
these processes require the switching off or fine tuning of the expression of
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specific genes at specific times, so the overall role of miRNAS is incredibly
complicated. Because the same miRNA can bind to different sections of mRNA
to inhibit transcription, the same miRNA can target quite a number of genes.
Some evidence has shown that where the miRNA attaches depends on that
gene’s promoter (Beezhold et al., 2010).

Because miRNAs are noncoding genes, their expression can be regulated by
transcription factors (proteins): miRNAs affect gene expression, but their own
expression in turn can be influenced. For example, the p53 tumor suppressor
protein, one of the most frequently studied proteins in cancer research, has
an apparent effect on miRNA. When p53 is mutated, tumor suppression is
lowered. However, mutated p53 has been shown to hinder the activity of tumor-
suppressing miRNAs, thereby strengthening its tumorigenic action (Beezhold
et al., 2010; Ladomery et al., 2011).

1.3 High-Throughput Profiling

The high-throughput methods described in this section represent a “middle
path” between older technologies and NGS. They result in large data sets but
do not produce biological resolution at the single-molecule level. However, the
data analysis challenges are similar to those for NGS.

1.3.1 Molecular Inversion Probe Arrays

Molecular inversion probes (MIPs) are used mainly to identify and analyze
single-nucleotide polymorphisms (SNPs) – that is, when a DNA sequence
differs from the biological norm by only one nucleotide. These microarrays are
used to analyze single strands of DNA. First described by Chowdhary et al.
(1994), a MIP is constructed of oligonucleotide probes for two segments of
DNA complementary to sequences flanking a particular target, connected by
a “linker sequence” (which can include a barcode for easy identification), for
a total probe length of about 120 nt (Ji and Welch, 2009). When the target
sequence is found, the complementary strand attaches to that sequence and
the linkers join together, making a loop with the target DNA sequence – a
single base pair in the case of an SNP – in the middle. One way to imagine
this is by remembering the name Chowdhary et al. originally gave the assay:
the “padlock probe” (Figure 1.1). The assay is broken down into three parts:
hybridizing, in which the complementary strand is created; circularizing, in
which the “padlocks” are set into place; and amplifying, in which the probe
sequences are amplified to enhance the signal. The probes can then be counted
using high-throughput sequencing methods. Because these probes “lock away”
the sequence of interest, only that specific sequence is captured by the assay,
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