INTRODUCTION TO PLASMA PHYSICS
With Space, Laboratory and Astrophysical Applications

Introducing the basic principles of plasma physics and their applications to space, laboratory, and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small-amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas, the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are also explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.

DONALD A. GURNETT is a pioneer in the study of waves in space plasmas, and has been active in teaching plasma physics and conducting experimental space physics research for over fifty years. He is currently the James A. Van Allen/R. J. Carver Professor of Physics at the University of Iowa and has received numerous awards for both his teaching and research. In 1994 he received the Iowa Board of Regents Award for Faculty Excellence, and in 1998 was elected a member of the National Academy of Sciences.

AMITAVA BHATTACHARJEE is a leading theoretical plasma physicist and has contributed to a wide range of subjects spanning fusion, space, and astrophysical plasma physics. He is currently a Professor of Astrophysical Sciences at Princeton University, and Head of the Princeton Plasma Physics Laboratory Theory Department. He is a Fellow of the American Physical Society, the American Association for the Advancement of Science, and the American Geophysical Union.
INTRODUCTION TO PLASMA PHYSICS

With Space, Laboratory and Astrophysical Applications

DONALD A. GURNETT
University of Iowa

AMITAVA BHATTACHARJEE
Princeton University, New Jersey
Dedicated to Marie, my loving wife for over fifty years, who has enthusiastically supported my various endeavors, especially this book.

Don Gurnett

And, to Melissa, without whose love and support this book and so much else would not be possible.

Amitava
Contents

Preface

1 Introduction

2 Characteristic Parameters of a Plasma
2.1 Number Density and Temperature
2.2 Debye Length
2.3 Plasma Frequency
2.4 Cyclotron Frequency
2.5 Collision Frequency
2.6 Number of Electrons per Debye Cube
2.7 The de Broglie Wavelength and Quantum Effects
References
Further Reading

3 Single-Particle Motions
3.1 Motion in a Static Uniform Magnetic Field
3.2 Motion in Static and Uniform Electric and Magnetic Fields
3.3 Gradient and Curvature Drifts
3.4 Motion in a Magnetic Mirror Field
3.5 Motion in a Time Varying Magnetic Field
3.6 Polarization Drift
3.7 Ponderomotive Force
3.8 Adiabatic Invariants
3.9 The Hamiltonian Method
3.10 Hamiltonian Chaos
References
Further Reading
Contents

4 Waves in a Cold Plasma 87
 4.1 Fourier Representation of Waves 87
 4.2 General Form of the Dispersion Relation 96
 4.3 Waves in a Cold Uniform Unmagnetized Plasma 98
 4.4 Waves in a Cold Uniform Magnetized Plasma 105
 4.5 Ray Paths in Inhomogeneous Plasmas 137
 References 146
 Further Reading 147

5 Kinetic Theory and the Moment Equations 148
 5.1 The Distribution Function 148
 5.2 The Boltzmann and Vlasov Equations 151
 5.3 Solutions Based on Constants of the Motion 155
 5.4 The Moment Equations 157
 5.5 Electron and Ion Pressure Waves 167
 5.6 Collisional Drag Force 173
 5.7 Ambipolar Diffusion 178
 References 184
 Further Reading 185

6 Magnetohydrodynamics 186
 6.1 The Basic Equations of MHD 186
 6.2 Magnetic Pressure 194
 6.3 Magnetic Field Convection and Diffusion 196
 6.4 Conservation Relations in Ideal MHD 202
 6.5 Magnetohydrodynamic Waves 206
 6.6 Validity of Resistive MHD Equations 215
 References 219
 Further Reading 220

7 MHD Equilibria and Stability 221
 7.1 Magnetostatic Equilibria 222
 7.2 Magnetohydrodynamic Equilibria 237
 7.3 Stability of Ideal Magnetostatic Equilibria 239
 7.4 Stability of Ideal Magnetohydrodynamic Equilibria 260
 7.5 Resistive Instabilities 263
 7.6 Magnetic Reconnection 270
 References 279
 Further Reading 280

8 Discontinuities and Shock Waves 281
 8.1 The MHD Jump Conditions 282
 8.2 Classification of Discontinuities 285
 8.3 Shock Waves 288
Contents

8.4 Charged Particle Acceleration by MHD Shocks 308
References 316
Further Reading 318

9 Electrostatic Waves in a Hot Unmagnetized Plasma 319
9.1 The Vlasov Approach 319
9.2 The Landau Approach 328
9.3 The Plasma Dispersion Function 346
9.4 The Dispersion Relation for a Multi-component Plasma 349
9.5 Stability 356
References 377
Further Reading 377

10 Waves in a Hot Magnetized Plasma 378
10.1 Linearization of the Vlasov Equation 379
10.2 Electrostatic Waves 382
10.3 Electromagnetic Waves 403
References 426
Further Reading 427

11 Nonlinear Effects 428
11.1 Quasi-linear Theory 428
11.2 Wave–Wave Interactions 442
11.3 Langmuir Wave Solitons 462
11.4 Stationary Nonlinear Electrostatic Potentials 470
References 477
Further Reading 478

12 Collisional Processes 479
12.1 Binary Coulomb Collisions 480
12.2 Importance of Small-Angle Collisions 481
12.3 The Fokker–Planck Equation 484
12.4 Conductivity of a Fully Ionized Plasma 491
12.5 Collision Operator for Maxwellian Distributions of Electrons and Ions 495
References 499
Further Reading 499

Appendix A: Symbols 500
Appendix B: Useful Trigonometric Identities 509
Appendix C: Vector Differential Operators 510
Appendix D: Vector Calculus Identities 512
Index 513
Preface

This textbook is intended for a full year introductory course in plasma physics at the senior undergraduate or first-year graduate level. It is based on lecture notes from courses taught by the authors for more than three decades at the University of Iowa, Columbia University, University of New Hampshire, and Princeton University. During these years, plasma physics has grown increasingly interdisciplinary, and there is a growing realization that diverse applications in laboratory, space, and astrophysical plasmas can be viewed from a common perspective. Since the students who take a course in plasma physics often have a wide range of interests, typically involving some combination of laboratory, space, and astrophysical plasmas, a special effort has been made to discuss applications from these areas of research. The emphasis of the book is on physical principles, less so on mathematical sophistication. An effort has been made to show all relevant steps in the derivations, and to match the level of presentation to the knowledge of students at the advanced undergraduate and early graduate level. The main requirements for students taking this course are that they have taken an advanced undergraduate course in electricity and magnetism and that they are knowledgeable about using the basic principles of vector calculus, i.e., gradient, divergence, and curl, and the various identities involving these vector operators. Although extensive use is made of complex variables, no special background is required in this subject beyond what is covered in an advanced calculus course. Relatively advanced mathematical concepts that are not typically covered in an undergraduate sequence, such as Fourier transforms, Laplace transforms, the Cauchy integral theorem, and the residue theorem, are discussed in sufficient detail that no additional preparation is required. Although this approach has undoubtedly added to the length of the book, we believe that the material covered provides an effective and self-contained textbook for teaching plasma physics. MKS units are used throughout. Problem solutions are available to instructors at www.cambridge.org/9781107027374

x
Preface

For the preparation of this text we would especially like to thank Kathy Kurth who did the typing and steadfastly stuck with us through the many revisions and additions that occurred over the years. We would also like to thank Joyce Chrisinger and Ann Persoon for their outstanding work preparing the illustrations and proofreading, Mr. Feng Chu, Dr. Manasvi Lingam, and Dr. Chung-Sang Ng for checking the accuracy of the equations, and Dr. Robert Decker, Dr. Yi-Min Huang, and Dr. Roscoe White for providing key illustrations. We would also like to thank Professors Iver Cairns, Len Fisk, Paul Kellogg, and Ondřej Santolík for their comments on portions of the manuscript. Don Gurnett would like to acknowledge the salary support provided by the University of Iowa and the Carver Foundation during the preparation of this manuscript, and Amitava Bhattacharjee would like to acknowledge the generous support of Princeton University.