

Plasmonic Nanoelectronics and Sensing

Plasmonic nanostructures provide new ways of manipulating the flow of light, with nanostructures and nanoparticles exhibiting optical properties never before seen in the macro-world. Covering plasmonic technology from fundamental theory to real-world applications, this work provides a comprehensive overview of the field.

- Discusses the fundamental theory of plasmonics, enabling a deeper understanding of plasmonic technology
- Details numerical methods for modeling, design, and optimization of plasmonic nanostructures
- Includes step-by-step design guidelines for active and passive plasmonic devices, demonstrating the implementation of real devices in the standard CMOS nanoscale electronic-photonic integrated circuit to help cut design, fabrication, and characterization time and cost
- Includes real-world case studies of plasmonic devices and sensors, explaining the benefits and downsides of different nanophotonic integrated circuits and sensing platforms.

Ideal for researchers, engineers, and graduate students in the fields of nanophotonics and nanoelectronics as well as optical biosensing.

Er-Ping Li is a Principal Scientist and Director of Nanophotonics and Electronics at the Institute of High Performance Computing, A*STAR, Singapore. He is a Fellow of the IEEE and of the Electromagnetics Academy, USA.

Hong-Son Chu is a Scientist at the Nanophotonics and Electronics Department of the Institute of High Performance Computing, A*STAR, Singapore. He is a member of the Optical Society of America, the IEEE, and the Materials Research Society.

EuMA High Frequency Technologies Series

Series Editor Peter Russer, Technical University of Munich

Homayoun Nikookar, Wavelet Radio

Thomas Zwick, Werner Wiesbeck, Jens Timmermann, and Grzegorz Adamiuk (Eds), *Ultra-wideband RF System Engineering*

Er-Ping Li and Hong-Son Chu, Plasmonic Nanoelectronics and Sensing

Forthcoming

Peter Russer, Johannes Russer, Uwe Siart, and Andreas Cangellaris, *Interference and Noise in Electromagnetics*

Maurizio Bozzi, Apostolos Georgiadis, and Ke Wu, Substrate Integrated Waveguides Luca Roselli (Ed.), Green RFID Systems

George Deligeorgis, Graphene Device Engineering

Luca Pierantoni and Fabio Coccetti, Radiofrequency Nanoelectronics Engineering Alexander Yarovoy, Introduction to UWB Wireless Technology and Applications

Plasmonic Nanoelectronics and Sensing

ER-PING LI and HONG-SON CHU

A*STAR Institute of High Performance Computing, Singapore

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107027022

© Cambridge University Press & Assessment 2014

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2014

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-02702-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of contributors			page ix	
	Pref	ace		xi	
1	Fundamentals of plasmonics				
	1.1	Electromagnetic field equations		1	
		1.1.1	Maxwell's equations in a medium	1	
			Material equations	2	
		1.1.3	Temporal and spatial dispersion in metals	4	
	1.2	1.2 The local-response approximation			
		1.2.1	The energy of an electromagnetic field in metals	6	
		1.2.2	Properties of the complex dielectric permittivity	7	
		1.2.3	The conduction-electron contribution	8	
		1.2.4	The bound-charge contribution	10	
	1.3	Electr	omagnetic fields in metals	14	
		1.3.1	Plasmon classification	14	
		1.3.2	Bulk plasmon modes	17	
		1.3.3	Surface plasmon modes	18	
	Refe	erences		19	
2	Plas	monic p	properties of metal nanostructures	20	
	2.1	Plasm	onic modes in spherical geometry	20	
		2.1.1	Spherical harmonics	20	
		2.1.2	Electromagnetic fields in vector spherical harmonics	22	
		2.1.3	Spherical plasmons	23	
		2.1.4	Scattering by a sphere	26	
		2.1.5	Cross-sections	28	
		2.1.6	A multilayer sphere	32	
	2.2			35	
		2.2.1	Cylindrical harmonics	35	
		2.2.2	Electromagnetic fields in vector cylindrical harmonics	36	
			Cylindrical plasmon polaritons	38	
		2.2.4		40	
		2.2.5	Cross-sections per unit length	43	
		2.2.6	Multilayer cylinder	46	
			- · · · · ·		

vi **Contents**

	2.3	Plasmonic modes in planar geometry	49		
		2.3.1 Planar harmonics	50		
		2.3.2 Electromagnetic fields in vector planar harmonics	51		
		2.3.3 Planar plasmon polaritons	52		
		2.3.4 Reflection and transmission by a slab	56		
		2.3.5 Reflectance, transmittance, and absorptance	58		
		2.3.6 A multilayer slab	60		
	Refe	erences	65		
3	Frequency-domain methods for modeling plasmonics				
	3.1	Introduction	67		
	3.2	Rigorous coupled-wave analysis	68		
		3.2.1 Formulations	68		
		3.2.2 Modeling 2D and 3D plasmonic nanostructures with RCWA	79		
	3.3	A semi-analytical method for near-field coupling study	87		
		3.3.1 Superlens and subwavelength imaging	87		
		3.3.2 Object–superlens coupling	87		
	3.4	Summary	95		
	Refe	erences	95		
4	Time	e-domain simulation for plasmonic devices	99		
	4.1	Introduction	99		
	4.2	Formulation	101		
		4.2.1 A model for metals	101		
		4.2.2 A model for solid-state materials	107		
		4.2.3 Simulation of an MSM waveguide and a microcavity	111		
		4.2.4 SPP generation using an MSM microdisk	114		
	4.3	Surface plasmon generation in semiconductor devices	120		
	4.4		125		
		4.4.1 GPU implementation	127		
		4.4.2 Applications	130		
	4.5	Summary	134		
	Refe	erences	135		
5	Pass	sive plasmonic waveguide-based devices	139		
	5.1 Introduction				
	5.2				
		based on it			
		5.2.1 Theoretical background	142		
		5.2.2 The dependence of the propagation characteristics on the			
		thickness of the SiO ₂ stripe	143		
		÷			

		5.2.3	The dependence of the propagation characteristics on the	
			dimensions of the Si nanowire	144
		5.2.4	The propagation characteristics of the vertical hybrid,	
			metal-insulator-metal, and dielectric-loaded plasmonic	
		505	waveguides	147
			Waveguide couplers	149
			Waveguide bends	151
			Power splitters	153
		5.2.8	Ring resonator filters	155
	5.3	Complementary metal-oxide-semiconductor compatible hybrid		
		•	onic waveguide devices	159
		5.3.1	1 1	160
		5.3.2	2 1	161
		5.3.3	Horizontal hybrid Cu–SiO ₂ –Si–SiO ₂ –Cu plasmonic waveguide	
	- 0		devices	165
	Refe	erences		176
6	Silicon-based active plasmonic devices for on-chip integration			
	6.1	Introd	uction	180
	6.2	Plasm	onic modulators based on horizontal MISIM plasmonic	
		waveg	guides	182
		6.2.1	The operating principle	182
		6.2.2	Experimental demonstration	186
		6.2.3	Issues and possible solutions	189
	6.3	Ather	mal ring modulators based on vertical metal-insulator-Si hybrid	
		plasm	onic waveguides	191
		6.3.1	Device structure	191
		6.3.2	Device properties	192
		6.3.3	Tolerance	200
	6.4	Schot	tky-barrier plasmonic detectors	201
		6.4.1	Device structure	201
		6.4.2	SPP power absorption	202
		6.4.3	Quantum efficiency	204
		6.4.4	Dark current and speed	207
	6.5	Metal	lic nanoparticle-based detectors	208
		6.5.1	Device structure	208
		6.5.2	LSPR-enhanced absorption	208
		6.5.3	Experimental demonstration	210
		6.5.4	Issues and solutions	212
	6.6	Concl	usions	213
	Refe	erences		214

Contents

vii

viii Contents

7 Plas	smonic biosensing devices and systems	217		
7.1	Introduction	217		
7.2	Plasmonic sensing mechanisms	219		
	7.2.1 Resonance conditions for sensing	219		
	7.2.2 Sensitivity and figure of merit	220		
7.3	Plasmonic biosensing systems	222		
	7.3.1 Sensor structures	222		
	7.3.2 Modulation methods	226		
	7.3.3 Bio-functionalization formats	227		
7.4	7.4 Design methods			
	7.4.1 The <i>N</i> -layer model	228		
	7.4.2 The FEM model	229		
7.5	Plasmonic biosensor design examples	233		
	7.5.1 Graphene-based biosensor design	233		
	7.5.2 Messenger RNA detection	237		
	7.5.3 Point-of-care clinical screening of PSA	241		
Ref	References			
Inde	er T	249		

Contributors

- 1 Fundamentals of plasmonics and
- 2 Plasmonic properties of metal nanostructures

Yuriy A. Akimov

A*STAR Institute of High Performance Computing, Singapore

3 Frequency-domain methods for modeling plasmonics

Zhengtong Liu

A*STAR Institute of High Performance Computing, Singapore

4 Time-domain simulation for plasmonic devices

Iftikhar Ahmed and Eng Huat Khoo

A*STAR Institute of High Performance Computing, Singapore

6 Silicon-based active plasmonic devices for on-chip integration

Dim-Lee Kwong, Guo-Qiang Lo, and Shiyang Zhu

A*STAR Institute of Microelectronics, Singapore

7 Plasmonic biosensing devices and systems

Lin Wu and Ping Bai

A*STAR Institute of High Performance Computing, Singapore

Preface

Data communication and information processing are driving the rapid development of ultra-high speed and ultra-compactness in nano-photo-electronic integration. Plasmonics technology has in recent years demonstrated the promise to overcome the size mismatch between microscale photonic and nanoscale electronic integration, and it likely will be crucial for the next generation of on-chip optical nano-interconnects, enabling the deployment of small-footprint and low-energy integrated circuitry.

The phenomenon of surface plasmons was first observed in the Lycurgus cup, which is a Roman glass cage cup in the British Museum, London, UK. This special cup is made of a dichroic glass that shows a different color depending on the condition of illumination. Specifically, in daylight, the cup appears to have a green color, which means that light is being reflected from the cup; however, when a light is shone into the cup and transmitted through the glass, it appears to have a red color. Today, we know that this fascinating behavior is due to nanoscopic-scale gold and silver particles embedded in the glass. However, it took 1500 years and doubtless countless fantastic interpretations for a plausible explanation to emerge. In the last few decades, the phenomenon of surface plasmons has been extensively studied both theoretically and experimentally, and there have been attempts to use it for various applications ranging from solar-cell energy and sensing to nanophotonic devices.

This book presents the results from many years of our collective research in the fields of nanoplasmonics and its applications. It presents state-of-the-art plasmonics device modeling and design techniques, with novel developments in particular in CMOS-compatible integrated circuits and sensing technologies. We hope this book can serve as a good basis for further progress in this field, both in academic research and for industrial applications. The book consists of seven chapters, contributed by Yuriy Akimov, Zhengtong Liu, Iftikhar Ahmed, Eng Huat Khoo, Er-Ping Li, Hong-Son Chu, Wu Lin, and Bai Ping, from the Department of Electronics and Photonics, Institute of High Performance Computing, Singapore, and Shiyang Zhu, Patrick Guo-Qiang Lo, and Dim-Lee Kwong from the Institute of Microelectronics, Agency for Science Technology and Research, Singapore.

Chapter 1 introduces the fundamentals of plasmonics associated with Maxwell's theory and applications in plasmonics. Chapter 2 provides an introduction to the plasmonic properties of metal nanostructures. Chapter 3 presents the modeling and simulation of plasmonics associated with plasmonic devices by implementation of frequency-domain numerical methods. In Chapter 4, time-domain simulation methods, in

xii Preface

particular the finite-difference time-domain method, are introduced for passive and active plasmonic device design. Chapter 5 describes the development of various passive plasmonic waveguides, in particular CMOS-compatible devices for on-chip nanoelectronic integration, and Chapter 6 presents CMOS-compatible active plasmonic devices for on-chip nanoelectronic integration. Both theoretical studies and experimental results are presented in these two chapters. The recent development of plasmonics for biosensing applications is presented in Chapter 7.

We gratefully acknowledge the research support from the Agency for Science Technology and Research, Singapore. Also acknowledged are the contributors to the book, Drs. Yuriy Akmov, Zhengtong Liu, Iftikhar Ahmed, Eng Huat Khoo, Wu Lin, Bai Ping, Shiyang Zhu, and Patrick Guo-Qiang Lo and Professor Dim-Lee Kwong, who did the really hard work. We also wish to express our gratitude to Mia Balashova and Julie Lancashire from Cambridge University Press for their great assistance in keeping us on schedule. Finally, we are grateful to all the contributors' families, without whose continuing support and understanding this book would never have been published.

We hope that this book will serve as a valuable reference for engineers, researchers, and post-graduate students in the fields of nanophotonics and nanoelectronics as well as optical biosensing. Even though much has been accomplished in these fields, we predict that many more exciting challenges will arise in these areas.

Er-Ping LI and Hong-Son CHU