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Preface

What Is This Book About?

This book has two main goals:

• to give an up-to-date exposition of the ‘semimartingale’ or ‘Lyapunov

function’ approach to the analysis of stochastic processes;

• to present applications of the methodology to fundamental models (classical

and modern) in probability theory and related fields.

Our expository bridge between these dual aims, between methods and

models, is the d-dimensional non-homogeneous random walk, which as a

model is simple to describe, closely resembling the classical homogeneous

random walk, but which displays many interesting and subtle phenomena alien

to the classical model. Non-homogeneous random walks cannot be studied by

the techniques generally used for homogeneous random walks: new methods

(and, just as importantly, new intuitions) are required.

Semimartingale and Lyapunov function ideas lead to a unified and powerful

methodology in this context. As well as non-homogeneous random walks,

we present applications of the methods to several other models from modern

probability theory; while any of the models that we discuss can be studied by

several probabilistic techniques, we believe that only the Lyapunov function

method has something to say about all of them.

We emphasize that semimartingale methods are ‘robust’ in the sense that

the underlying stochastic process need not satisfy simplifying assumptions

such as the Markov property, reversibility, or time homogeneity, for instance,

and the state space of the process need not be countable. In such a general

setting, the semimartingale approach has few rivals. In particular, the methods

presented work for non-reversible Markov chains. A general feeling is that, if

a Markov chain is reversible, then things can be done in many possible ways:

vii
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viii Preface

there are methods from electrical networks, spectral calculations, harmonic

analysis, etc. On the other hand, the non-reversible case is usually much

harder. Similarly, the Markovian setting is not essential to the methods.

In the semimartingale approach, the Markov property is a side issue and

non-Markovian processes can be treated equally well.

The Lyapunov function approach for analysis of Markov processes origin-

ated with classical work of Foster, and the theory has since expanded greatly

and proved very successful in analysis of numerous Markov models. Aspects

of Foster–Lyapunov theory are presented in [6, 96, 239] (the presentation

in [96] being the closest to our perspective). However, almost all of these

existing presentations are concerned with the situation in which the process

under consideration is not too close to a phase boundary in terms of its

asymptotic behaviour. This book deals with analysis of near-critical systems,

which exhibit fundamental phase transitions such as that between recurrence

and transience.

Near-critical systems are exactly that: even if transient, they are not ballistic;

even if positive recurrent, they do not exhibit geometric ergodicity; random

quantities associated with the system typically have heavy (power-law) tails.

Heavy tails have become increasingly prevalent in applications across many

fields over the last few years, including queueing theory and finance; physicists

associate heavy tails with the presence of ‘self-organized criticality’, a very

fashionable topic at the moment. Naturally, the analysis of near-critical systems

is more challenging and delicate than that for systems that are far from

criticality.

The fundamental contributions to the near-critical situation come from

classical work of Lamperti, and almost none of this has previously appeared in

any book, despite its age and importance. Lamperti’s basic problem concerned

the asymptotic analysis of a stochastic process on the half-line with mean drift

at x of order 1/x: this is exactly the critical situation in respect of the recurrence

classification of the process. Importantly, Lamperti’s techniques are based on

semimartingale ideas, and so the Markov property is not essential. Building on

Lamperti’s ideas, over the last 15 years much work has appeared in academic

journals on semimartingale methods and near-critical probabilistic systems,

and this is the theory that we present in this book.

We want to emphasize the importance of applications of the theory. The

Lyapunov function ideology often enables one to reduce a question about

a complex model arising in applications to a question about a simpler

one-dimensional model by considering a function of the original process

whose image is one-dimensional. If the original model is interesting, in that its

behaviour is near-critical in some sense, then the image process (for a suitably
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Preface ix

chosen Lyapunov function) will be near-critical. To give a concrete example,

the classical and fundamental model of symmetric simple random walk on

Z
d (Xn, say) can be analysed through the Lyapunov function f (x) = ‖x‖ (the

Euclidean norm). Then f (Xn) is a stochastic process on the half-line with mean

drift of order 1/x at x, i.e., precisely a critical Lamperti-type process. Moreover,

f (Xn) is not a Markov process, demonstrating the importance of the generality

of the semimartingale approach.

Much more complicated and non-classical examples can be studied by

the same methods, and we present several such examples to give a flavour

of the power and utility of the techniques. We mention, for example,

models from queueing theory, interacting particle systems, random walks

in random environments, and so on. As mentioned above, our canonical

example will be the non-homogeneous random walk. This model is a natural

generalization of the very classical and extremely well-studied homogeneous

random walk, but whose analysis requires entirely new methods. The

semimartingale approach gives a systematic and intuitive way to analyse these

processes.

So, to summarize, this book is about the analysis of Markov processes

(such as random walks) via the method of Lyapunov functions; a correctly

applied Lyapunov function of a process gives rise to a semimartingale. Our

terminology here is neither particularly standard nor particularly precise; we

discuss briefly here our usage.

What Is a Random Walk?

Many random walks are sums of i.i.d. random variables (or vectors); this

usage is too narrow for us. Many random walks take place on graphs or

groups; combinatorial or algebraic considerations are not the focus of this

book. Our random walks are (usually) Markov chains, on state spaces that are

embedded in Euclidean space, with transitions that are in some sense local (so

that it is natural to speak of ‘jumps’ or ‘increments’). These are the models

that are best suited to the probabilistic approach of this book, and include

broad classes of models of interest in applications, such as queueing theory or

ecology.

This book is not just about random walks; we discuss other Markov

processes, including interacting particle systems and a stochastic billiards

model, for example, but random walks provide a rich set of models on which

to demonstrate some aspects of the Lyapunov function method.
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x Preface

What Is a Lyapunov Function?

The phrase ‘Lyapunov function’ has a quite precise technical meaning in

the theory of stability of differential equations. For us, it has a much looser

meaning: a Lyapunov function earns the name if the image under the function

of a stochastic process is a process satisfying some conditions that enable one

to deduce some property of the original process. For instance, if (ξn, n ≥ 0)

is a time-homogeneous Markov chain on Z
d, and f : Rd → R is a judicious

choice of function such that there is a set A ⊂ Z
d for which

E[f (ξn+1) − f (ξn) | ξn = x] ≤ 0, for all x /∈ A, (⋆)

then one can deduce that ξn is recurrent, or transient, if f and A satisfy certain

simple conditions. Results of this kind, which have their origins in work of

F. G. Foster in the 1950s, are known as Foster–Lyapunov conditions.

In all but the simplest cases, one cannot compute the left-hand side of (⋆)

exactly, but often one can estimate (⋆) using Taylor’s formula and coarse

properties of the increments ξn+1 − ξn; usually one or two moments suffice.

Truncation arguments may be needed to control unusually large increments,

where Taylor’s formula will break down.

The language and tools of stopping times and martingale theory are close

at hand. If τ = min{n ≥ 0 : ξn ∈ A} denotes the first hitting time of

A, the drift condition (⋆) above can be interpreted as saying that f (ξn∧τ )

is a supermartingale adapted to the natural filtration. Since recurrence and

transience properties of ξn can be related to properties of the stopping time

τ , it is natural to try to examine τ using the technology of martingale theory,

such as the optional stopping or martingale convergence theorems. This is the

basic ideology of the semimartingale method. This approach came after Foster;

fundamental work was done by J. Lamperti in the 1960s.

What Is a Semimartingale?

The phrase ‘semimartingale’ has a quite precise technical meaning in

stochastic analysis, as well as being an obsolete term for submartingale. For

us, it has a much looser meaning: a semimartingale is a process that satisfies

some drift condition like (⋆), typically only locally. Often, with the aid of a

stopping time, one can convert such a process into a true supermartingale or

submartingale, as in the case of (⋆), but we do not make this demand on all our

semimartingales.
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Features of This Book

As mentioned above, we use the terminology ‘Lyapunov function’ in a general

sense, and in our usage the term does not presuppose any particular property

(stability or otherwise) for the transformed process. When presented with a

Foster–Lyapunov result demanding verification of a drift condition such as (⋆),

one immediately is faced with the problem of how to choose the Lyapunov

function f . Usually there is no fixed rule about how to discover the ‘right’

Lyapunov function, which must somehow encapsulate one’s intuition about

the process ξn under consideration. For this reason, in this book we not only

present the ‘right’ answers, but also do our best to explain the intuition behind

the choice of Lyapunov function in the context of diverse applications and

examples.

Finding a suitable Lyapunov function is not always easy, and there is no

exact algorithm for that. Nevertheless, there are several intuitive rules and

non-rigorous ideas that may help; in the text, we emphasize this kind of

heuristic in the following way:

i
Just try a good-looking Lyapunov function, work hard to

perform all the computations, and hope for the best.

We usually avoid adorning the main text with citations to the literature,

and instead collect bibliographical notes at the end of each chapter. We

have endeavoured to track down original references where possible, and have

uncovered several important works of which we were previously unaware; we

apologise in advance for any egregious omissions that remain.

Overview of Content

The material is presented in a logical order, but the book has several entry

points for the reader. Chapter 1 serves as a gentle introduction to the main

theme of the book (non-homogeneous random walks). Chapters 2 and 3

introduce the technical apparatus of the semimartingale approach and describe

its application to near-critical processes on the half-line. Our intention is that

these two chapters will serve as a useful reference for researchers who wish

to use these tools, and so we have tried to give relatively strong versions of

the results in some generality. As an antidote to the technical demands of

these two chapters, we have included many examples, as our intention is also

that Chapters 2 and 3 should prove instructive to the student who wishes to

develop an intuition for the method. Chapters 4–6 present applications of the

Lyapunov function method to some near-critical stochastic processes. Thus,
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xii Preface

while these chapters frequently refer to results from Chapter 2 (and Chapter 4

also relies heavily on Chapter 3), our intention is that the reader who is so

inclined can take the technical tools for granted and read each of these later

chapters as a stand-alone exposition. The final chapter, Chapter 7, switches

focus to continuous time; while the development parallels some of the ideas in

Chapter 2, this chapter is essentially self-contained.

The section headings in the table of contents provide an indication of the

subject matter of each chapter; here we outline briefly what each chapter

contains.

Chapter 1 Introduction

This chapter motivates the developments that follow by way of a classical

and fundamental model in probability theory: the d-dimensional random

walk. We describe the transition from (classical) homogeneous random walk

to spatially non-homogeneous random walks, and how the investigation of

such models is motivated by theoretical questions arising from trying to go

beyond the classical setting and to probe the recurrence/transience phase

transition. Immediately the relaxation of spatial homogeneity requires a

significant readjustment of random walk intuition: one can readily construct

two-dimensional, zero-drift, bounded-jump random walks that are transient,

for example, provided spatial homogeneity is not enforced, completely

contrary to classical behaviour.

Chapter 2 Semimartingale Approach and Markov Chains

This section presents the basic technical apparatus that we rely on for the

rest of the book. We review some basic martingale ideas (Doob’s inequality,

martingale convergence, and the optional stopping theorem) and present a

variety of semimartingale tools, including maximal inequalities, results on

finiteness of hitting times, and existence and non-existence of moments for

hitting times. These results include Foster–Lyapunov criteria for Markov

chains, whereby a suitable Lyapunov function enables one to conclude that

the process is transient, recurrent, positive recurrent, etc. We provide many

examples of the application of these results.

Chapter 3 Lamperti’s Problem

This chapter presents applications of the semimartingale tools of Chapter 2

in the context of one-dimensional adapted processes with asymptotically

vanishing drift, the so-called Lamperti’s problem. Lamperti’s problem serves

as a first important example of a near-critical stochastic process, and is also

motivated by its ubiquity arising from the application of the Lyapunov function
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method to near-critical processes in higher dimensions. This chapter studies

in turn various aspects of the asymptotic behaviour of Lamperti processes,

including the recurrence classification for processes with asymptotically zero

drifts, results on existence and non-existence of passage-time moments,

Gamma-type weak convergence results, and almost-sure bounds on the

trajectory of the process.

Chapter 4 Many-Dimensional Random Walks

This chapter presents applications of the results of Chapter 3 to many

dimensional random walks. The applications in this chapter (and later on)

proceed by the Lyapunov function ideology: use a suitably chosen Lyapunov

function of the many-dimensional Markov process to obtain a (probably

non-Markov) stochastic process in one dimension, which fits into the frame-

work of Chapter 3. We consider in detail the recurrence classification problem

for non-homogeneous random walks, with emphasis on the possibility of

anomalous recurrence behaviour. We also give results on angular asymptotics

and on the range of many-dimensional martingales.

Chapter 5 Heavy Tails

The processes considered in Chapters 3 and 4 are all assumed to have at least

one or two moments for their increments. This chapter turns to the heavy-tailed

case when the first or second increment moment is infinite. We present results

for real-valued Markov chains with heavy-tailed jumps, focusing on recurrence

classification; we demonstrate how the Lyapunov function approach is equally

effective in this heavy-tailed setting.

Chapter 6 Further Applications

This chapter presents a selection of applications of the Lyapunov function

method to some near-critical stochastic systems. We consider Markov pro-

cesses in random environments, some models of interacting particle systems,

and a stochastic billiards process. This chapter focuses on recurrence and

transience results, obtained by applications of the Foster–Lyapunov criteria

from Chapter 2.

Chapter 7 Markov Chains in Continuous Time

For the final chapter of the book, we switch from discrete to continuous

time. This chapter presents recent developments on semimartingale techniques

for continuous-time discrete-space Markov chains, non-homogeneous both in

space and in jump rates. For example, the (embedded) jump process might

be of Lamperti type, while the rates are not uniformly bounded away from
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0 and ∞. This gives rise to additional phenomena over the discrete-time

setting. We present conditions for existence of moments of hitting times in

this continuous-time setting, and give criteria for explosion and implosion for

such processes, again using semimartingale techniques.
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Notation

Miscellaneous

We write a := · · · to indicate the definition of a. Occasionally we also use

· · · =: a. We use the standard abbreviation ‘a.s.’ for ‘almost surely’ (with

probability 1).

Sets, Probabilities, and Events

The set of integers is Z. The natural numbers are N := {1, 2, 3, . . .}. The

non-negative integers are Z+ := {0} ∪ N. The real numbers are R. The

non-negative half-line is R+ := [0, ∞). It is often convenient to extend these

sets to include infinities, so we set Z+ := Z+ ∪ {+∞}, R := R ∪ {±∞}, and

R+ := R+ ∪ {+∞}. For a set S, we write #S for its cardinality (number of

elements, when finite). For a measurable subset A of Rd, we write |A| for its

d-dimensional Lebesgue measure (volume).

We will always assume an underlying probability space (�,F ,P); expecta-

tion with respect to P will be denoted E. For A ⊆ �, we denote its complement

by Ac = � \ A.

If (An, n ∈ Z+) is a sequence of events, we use the standard notation

{An i.o.} = {An infinitely often}

= lim sup An = ∩m≥0 ∪n≥m An;

{An ev.} = {An eventually} = {An all but finitely often}

= lim inf An = ∪m≥0 ∩n≥m An;

{An f.o.} = {An finitely often} = {An i.o.}c = {Ac
n ev.}

= ∪m≥0 ∩n≥m Ac
n.
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xvi Notation

Conventions and Empty Evaluations

Unless otherwise stated, the following conventions are in force throughout.

An empty sum is zero, and an empty product is one. Also inf ∅ := +∞, and

sup ∅ := 0.

Real Numbers, Vectors, and Matrices

For x a real number we set

x+ := max{0, x}, and x− := − min{0, x},

so x = x+ − x− and |x| = x+ + x−. For real numbers x and y, we set

x ∧ y := min{x, y}, and x ∨ y := max{x, y}.

For x ∈ R we write ⌊x⌋ for the largest integer not exceeding x, and ⌈x⌉ for

the smallest integer no less than x; so ⌈x⌉ − ⌊x⌋ ∈ {0, 1}, and is 0 if and only if

x ∈ Z.

For emphasis, we sometimes denote monotone convergence by ‘↑’ and ‘↓’,

so for a sequence ax ∈ R, ax ↑ a as x → ∞ means that limx→∞ ax = a and

ax ≤ ay for all x ≤ y.

For a matrix M with real-valued entries we write M⊤ for its transpose,

and λmax(M) for its maximum eigenvalue. We usually use boldface letters

for vectors in R
d, and write, for example, x = (x1, . . . , xd)

⊤ in Cartesian

components; for definiteness, vectors x ∈ R
d are viewed as column vectors

throughout. The origin in R
d is denoted by 0. We write ‖ · ‖ for the Euclidean

norm on R
d. We write e1, . . . , ed for the standard orthonormal basis of Rd, and

for vectors u, v ∈ R
d we denote their scalar product by u⊤v, u · v, or 〈u, v〉.

For a non-zero vector x ∈ R
d we write x̂ := x/‖x‖ for the corresponding unit

vector, and we adopt the convention 0̂ := 0. The unit-radius sphere in R
d is

S
d−1 := {u ∈ R

d : ‖u‖ = 1}.

The (closed) Euclidean d-ball centred at x ∈ R
d with radius r ∈ R+ is

B(x; r) := {y ∈ R
d : ‖x − y‖ ≤ r}.

We denote the d by d identity matrix by Id. For a square matrix M with

real-valued entries, we write tr M for its trace. A d by d real matrix M acts on

column vectors x ∈ R
d as an affine function from R

d to R
d via x �→ Mx. The

associated matrix (operator) norm ‖ · ‖op induced by the Euclidean norm on

R
d is

‖M‖op := sup
u∈Sd−1

‖Mu‖.
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Notation xvii

Using the variational characterization of the largest eigenvalue as λmax(M) =

supu∈Sd−1(u⊤Mu), we note that

sup
u∈Sd−1

‖Mu‖2 = sup
u∈Sd−1

(

u⊤M⊤Mu
)

= λmax(M
⊤M),

so that an alternative expression for the operator norm is

‖M‖op =
(

λmax(M
⊤M)

)1/2
.

Functions

The natural logarithm of x is log x. For r ∈ R, we write logr x for (log x)r. We

also write log1 x := log x, and for k ≥ 2 set logk x := log logk−1 x, so that

logk x is the k-fold iterated logarithm of x.

Random Variables

We use 1 for the indicator function of an event, indicated either in curly braces

as 1{ · } or via a previously assigned symbol such as 1(A).

For a sub-σ -field G of F , G-measurable random variables X and Y , and an

event A ∈ G, the statement ‘X = Y on A’ is equivalent to ‘X1(A) = Y1(A)’;

similarly for inequalities.

We use the standard notation for essential supremum and infimum: for a

real-valued random variable X,

ess inf X := sup{x ∈ R : P[X ≥ x] = 1};

ess sup X := inf{x ∈ R : P[X > x] = 0}.

For R
d-valued random variables X, X1, X2, . . ., we denote convergence by

Xn → X qualified by the mode of convergence in the text; for example, Xn →

X a.s. means that P[Xn → X] = 1. Sometimes for compactness we write

‘
a.s.

−→’, ‘
p

−→’, and ‘
d

−→’ for convergence almost surely, in probability, and in

distribution, respectively.

Asymptotics

We reserve unadorned Landau O( · ) and o( · ) symbols for the case where

implicit constants are non-random. Thus for a real-valued function f and an

R+-valued function g, the expression f (x) = O(g(x)) means that there exist

finite deterministic constants C and x0 such that |f (x)| ≤ Cg(x) for all x ≥

x0. Similarly, f (x) = o(g(x)) means that for any ε > 0 there exists a finite

deterministic xε such that |f (x)| ≤ εg(x) for all x ≥ xε.
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xviii Notation

It is convenient to extend the O, o notation to permit random variables, but it

is important to do this carefully to avoid ambiguous formulas. Given a σ -field

F and F-measurable random variables X and Y , we write OF
X (Y) to represent

an F-measurable random variable such that there exist finite deterministic

constants C and x0 such that |OF
X (Y)| ≤ CY on the event {X ≥ x0}. Although

this notation is a little cumbersome, we feel the extra clarity is worthwhile, as

an ambiguous O( · ) can hide a multitude of sins.
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