Quantum information theory is a branch of science at the frontiers of physics, mathematics and information science, and offers a variety of solutions that are impossible using classical theory. This book provides a detailed introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory.

The second edition contains new sections and entirely new chapters: the hot topic of multipartite entanglement; in-depth discussion of the discrete structures in finite dimensional Hilbert space, including unitary operator bases, mutually unbiased bases, symmetric informationally complete generalised measurements, discrete Wigner functions and unitary designs; the Gleason and Kochen–Specker theorems; the proof of the Lieb conjecture; the measure concentration phenomenon; and the Hastings’ non-additivity theorem.

This richly-illustrated book will be useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied.

INGEMAR BENGTSSON is a professor of physics at Stockholm University. After gaining a Ph.D. in theoretical physics from the University of Göteborg (1984), he held post-doctoral positions at CERN, Geneva, and Imperial College, London. He returned to Göteborg in 1988 as a research assistant at Chalmers University of Technology, before taking up a position as Lecturer in Physics at Stockholm University in 1993. He was appointed Professor of Physics in 2000. Professor Bengtsson is a member of the Swedish Physical Society and a former board member of its Divisions for Particle Physics and for Gravitation. His research interests are related to geometry, in the forms of classical general relativity and quantum theory.

KAROL ŻYCZKOWSKI is a professor at the Institute of Physics, Jagiellonian University, Kraków, Poland and also at the Center for Theoretical Physics, Polish Academy of Sciences, Warsaw. He gained his Ph.D. and habilitation in theoretical physics at Jagiellonian University, and has followed this with a Humboldt Fellowship in Essen, a Fulbright Fellowship at the University of Maryland, College Park, and a visiting research position at the Perimeter Institute, Waterloo, Ontario. He has been a docent at the Academy of Sciences since 1999 and a full professor at Jagiellonian University since 2004. Professor Życzkowski is a member of the Polish Physical Society and Academia Europaea. He works on quantum information, dynamical systems and chaos, quantum and statistical physics, applied mathematics and the theory of voting.
GEOMETRY OF QUANTUM STATES
An Introduction to Quantum Entanglement
SECOND EDITION

INGEMAR BENGTSSON
Stockholm University, Sweden

KAROL ŻYCZKOWSKI
Jagiellonian University, Poland
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>xv</td>
</tr>
<tr>
<td>1 Convexity, colours and statistics</td>
<td></td>
</tr>
<tr>
<td>1.1 Convex sets</td>
<td>1</td>
</tr>
<tr>
<td>1.2 High dimensional geometry</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Colour theory</td>
<td>15</td>
</tr>
<tr>
<td>1.4 What is ‘distance’?</td>
<td>18</td>
</tr>
<tr>
<td>1.5 Probability and statistics</td>
<td>25</td>
</tr>
<tr>
<td>Problems</td>
<td>28</td>
</tr>
<tr>
<td>2 Geometry of probability distributions</td>
<td>29</td>
</tr>
<tr>
<td>2.1 Majorisation and partial order</td>
<td>29</td>
</tr>
<tr>
<td>2.2 Shannon entropy</td>
<td>35</td>
</tr>
<tr>
<td>2.3 Relative entropy</td>
<td>41</td>
</tr>
<tr>
<td>2.4 Continuous distributions and measures</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Statistical geometry and the Fisher–Rao metric</td>
<td>48</td>
</tr>
<tr>
<td>2.6 Classical ensembles</td>
<td>55</td>
</tr>
<tr>
<td>2.7 Generalised entropies</td>
<td>56</td>
</tr>
<tr>
<td>Problems</td>
<td>62</td>
</tr>
<tr>
<td>3 Much ado about spheres</td>
<td>63</td>
</tr>
<tr>
<td>3.1 Spheres</td>
<td>63</td>
</tr>
<tr>
<td>3.2 Parallel transport and statistical geometry</td>
<td>68</td>
</tr>
<tr>
<td>3.3 Complex, Hermitian, and Kähler manifolds</td>
<td>74</td>
</tr>
<tr>
<td>3.4 Symplectic manifolds</td>
<td>80</td>
</tr>
<tr>
<td>3.5 The Hopf fibration of the 3-sphere</td>
<td>82</td>
</tr>
<tr>
<td>3.6 Fibre bundles and their connections</td>
<td>88</td>
</tr>
<tr>
<td>3.7 The 3-sphere as a group</td>
<td>95</td>
</tr>
</tbody>
</table>

© in this web service Cambridge University Press
Table of Contents

3.8 Cosets and all that
Problems

4 Complex projective spaces
4.1 From art to mathematics
4.2 Complex projective geometry
4.3 Complex curves, quadrics and the Segre embedding
4.4 Stars, spinors and complex curves
4.5 The Fubini–Study metric
4.6 \mathbb{CP}^n illustrated
4.7 Symplectic geometry and the Fubini–Study measure
4.8 Fibre bundle aspects
4.9 Grassmannians and flag manifolds
Problems

5 Outline of quantum mechanics
5.1 Quantum mechanics
5.2 Qubits and Bloch spheres
5.3 The statistical and the Fubini–Study distances
5.4 A real look at quantum dynamics
5.5 Time reversals
5.6 Classical and quantum states: a unified approach
5.7 Gleason and Kochen–Specker
Problems

6 Coherent states and group actions
6.1 Canonical coherent states
6.2 Quasi-probability distributions on the plane
6.3 Bloch coherent states
6.4 From complex curves to $SU(K)$ coherent states
6.5 $SU(3)$ coherent states
Problems

7 The stellar representation
7.1 The stellar representation in quantum mechanics
7.2 Orbits and coherent states
7.3 The Husimi function
7.4 Wehrl entropy and the Lieb conjecture
7.5 Generalised Wehrl entropies
7.6 Random pure states
7.7 From the transport problem to the Monge distance
Problems
Contents

8 The space of density matrices 219
 8.1 Hilbert–Schmidt space and positive operators 220
 8.2 The set of mixed states 223
 8.3 Unitary transformations 226
 8.4 The space of density matrices as a convex set 229
 8.5 Stratification 234
 8.6 Projections and cross-sections 239
 8.7 An algebraic afterthought 244
 8.8 Summary 247
 Problems 248

9 Purification of mixed quantum states 249
 9.1 Tensor products and state reduction 250
 9.2 The Schmidt decomposition 252
 9.3 State purification and the Hilbert–Schmidt bundle 255
 9.4 A first look at the Bures metric 258
 9.5 Bures geometry for $N = 2$ 261
 9.6 Further properties of the Bures metric 263
 Problems 266

10 Quantum operations 267
 10.1 Measurements and POVMs 267
 10.2 Algebraic detour: matrix reshaping and reshuffling 274
 10.3 Positive and completely positive maps 278
 10.4 Environmental representations 283
 10.5 Some spectral properties 286
 10.6 Unital and bistochastic maps 288
 10.7 One qubit maps 291
 Problems 295

11 Duality: maps versus states 296
 11.1 Positive and decomposable maps 296
 11.2 Dual cones and super-positive maps 304
 11.3 Jamiołkowski isomorphism 305
 11.4 Quantum maps and quantum states 309
 Problems 311

12 Discrete structures in Hilbert space 313
 12.1 Unitary operator bases and the Heisenberg groups 313
 12.2 Prime, composite and prime power dimensions 317
 12.3 More unitary operator bases 322
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4</td>
<td>Mutually unbiased bases</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>Finite geometries and discrete Wigner functions</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>12.6</td>
<td>Clifford groups and stabilizer states</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>12.7</td>
<td>Some designs</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>12.8</td>
<td>SICs</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Density matrices and entropies</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>13.1</td>
<td>Ordering operators</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>Von Neumann entropy</td>
<td>359</td>
<td></td>
</tr>
<tr>
<td>13.3</td>
<td>Quantum relative entropy</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>13.4</td>
<td>Other entropies</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>13.5</td>
<td>Majorisation of density matrices</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>13.6</td>
<td>Proof of the Lieb conjecture</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td>13.7</td>
<td>Entropy dynamics</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Distinguishability measures</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Classical distinguishability measures</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td>Quantum distinguishability measures</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>Fidelity and statistical distance</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Monotone metrics and measures</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Monotone metrics</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>15.2</td>
<td>Product measures and flag manifolds</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>15.3</td>
<td>Hilbert–Schmidt measure</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>15.4</td>
<td>Bures measure</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>Induced measures</td>
<td>416</td>
<td></td>
</tr>
<tr>
<td>15.6</td>
<td>Random density matrices</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td>15.7</td>
<td>Random operations</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>15.8</td>
<td>Concentration of measure</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Quantum entanglement</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introducing entanglement</td>
<td>433</td>
<td></td>
</tr>
<tr>
<td>16.2</td>
<td>Two-qubit pure states: entanglement illustrated</td>
<td>436</td>
<td></td>
</tr>
<tr>
<td>16.3</td>
<td>Maximally entangled states</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>16.4</td>
<td>Pure states of a bipartite system</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>16.5</td>
<td>A first look at entangled mixed states</td>
<td>454</td>
<td></td>
</tr>
<tr>
<td>16.6</td>
<td>Separability criteria</td>
<td>460</td>
<td></td>
</tr>
</tbody>
</table>
Contents

16.7 Geometry of the set of separable states 466
16.8 Entanglement measures 471
16.9 Two-qubit mixed states 481
Problems 491

17 Multipartite entanglement 493
17.1 How much is three larger than two? 493
17.2 Botany of states 494
17.3 Permutation symmetric states 498
17.4 Invariant theory and quantum states 503
17.5 Monogamy relations and global multipartite entanglement 515
17.6 Local spectra and the momentum map 518
17.7 AME states and error-correcting codes 525
17.8 Entanglement in quantum spin systems 532
Problems 542

Epilogue 544

Appendix A Basic notions of differential geometry 545
A.1 Differential forms 545
A.2 Riemannian curvature 546
A.3 A key fact about mappings 547

Appendix B Basic notions of group theory 549
B.1 Lie groups and Lie algebras 549
B.2 SU(2) 550
B.3 SU(N) 551
B.4 Homomorphisms between low-dimensional groups 552

Appendix C Geometry: do it yourself 553

Appendix D Hints and answers to the exercises 557

References 572
Index 614
Preface

Preface to the first edition

The geometry of quantum states is a highly interesting subject in itself. It is also relevant in view of possible applications in the rapidly developing fields of quantum information and quantum computing.

But what is it? In physics words like ‘states’ and ‘system’ are often used. Skipping lightly past the question of what these words mean – it will be made clear by practice – it is natural to ask for the properties of the space of all possible states of a given system. The simplest state space occurs in computer science: a ‘bit’ has a space of states that consists simply of two points, representing on and off. In probability theory the state space of a bit is really a line segment, since the bit may be ‘on’ with some probability between zero and one. In general the state spaces used in probability theory are ‘convex hulls’ of a discrete or continuous set of points. The geometry of these simple state spaces is surprisingly subtle – especially since different ways of distinguishing probability distributions give rise to different notions of distance, each with their own distinct operational meaning. There is an old idea saying that a geometry can be understood once it is understood what linear transformations are acting on it, and we will see that this is true here as well.

The state spaces of classical mechanics are – at least from the point of view that we adopt – just instances of the state spaces of classical probability theory, with the added requirement that the sample spaces (whose ‘convex hull’ we study) are large enough, and structured enough, so that the transformations acting on them include canonical transformations generated by Hamiltonian functions.

In quantum theory the distinction between probability theory and mechanics goes away. The simplest quantum state space is these days known as a ‘qubit’. There are many physical realisations of a qubit, from silver atoms of spin 1/2 (assuming that we agree to measure only their spin) to the qubits that are literally designed in today’s laboratories. As a state space a qubit is a three–dimensional ball; each diameter of the ball is the state space of some classical bit, and there are so many
bits that their sample spaces conspire to form a space – namely the surface of the ball – large enough to carry the canonical transformations that are characteristic of mechanics. Hence the word quantum mechanics.

It is not particularly difficult to understand a three–dimensional ball, or to see how this description emerges from the usual description of a qubit in terms of a complex two-dimensional Hilbert space. In this case we can take the word geometry literally – there will exist a one-to-one correspondence between pure states of the qubit and the points of the surface of the Earth. Moreover, at least as far as the surface is concerned, its geometry has a statistical meaning when transcribed to the qubit (although we will see some strange things happening in the interior).

As the dimension of the Hilbert space goes up, the geometry of the state spaces becomes very intricate, and qualitatively new features arise – such as the subtle way in which composite quantum systems are represented. Our purpose is to describe this geometry. We believe it is worth doing. Quantum state spaces are more wonderful than classical state spaces, and in the end composite systems of qubits may turn out to have more practical applications than the bits themselves already have.

A few words about the contents of our book. As a glance at the Contents will show, there are 17 chapters, culminating in a long chapter on ‘entanglement’. Along the way, we take our time to explore many curious byways of geometry. We expect that you – the reader – are familiar with the principles of quantum mechanics at the advanced undergraduate level. We do not really expect more than that, and should you be unfamiliar with quantum mechanics we hope that you will find some sections of the book profitable anyway. You may start reading any chapter – if you find it incomprehensible we hope that the cross-references and the index will enable you to see what parts of the earlier chapters may be helpful to you. In the unlikely event that you are not even interested in quantum mechanics, you may perhaps enjoy our explanations of some of the geometrical ideas that we come across.

Of course there are limits to how independent the chapters can be of each other. Convex set theory (Chapter 1) pervades all statistical theories, and hence all our chapters. The ideas behind the classical Shannon entropy and the Fisher–Rao geometry (Chapter 2) must be brought in to explain quantum mechanical entropies (Chapter 12) and quantum statistical geometry (Chapters 9 and 13). Sometimes we have to assume a little extra knowledge on the part of the reader, but since no chapter in our book assumes that all the previous chapters have been understood, this should not pose any great difficulties.

We have made a special effort to illustrate the geometry of quantum mechanics. This is not always easy, since the spaces that we encounter more often than not have a dimension higher than three. We have simply done the best we could. To facilitate self-study each chapter concludes with problems for the reader, while some additional geometrical exercises are presented in the final appendix.
Once and for all, let us say that we limit ourselves to finite-dimensional state spaces. We do this for two reasons. One of them is that it simplifies the story very much, and the other is that finite-dimensional systems are of great independent interest in real experiments.

The entire book may be considered as an introduction to quantum entanglement. This very non-classical feature provides a key resource for several modern applications of quantum mechanics including quantum cryptography, quantum computing and quantum communication. We hope that our book may be useful for graduate and postgraduate students of physics. It is written first of all for readers who do not read the mathematical literature everyday, but we hope that students of mathematics and of the information sciences will find it useful as well, since they also may wish to learn about quantum entanglement.

We have been working on the book for about five years. Throughout this time we enjoyed the support of Stockholm University, the Jagiellonian University in Cracow, and the Center for Theoretical Physics of the Polish Academy of Sciences in Warsaw. The book was completed in Waterloo during our stay at the Perimeter Institute for Theoretical Physics. The motto at its main entrance – ΑΣΠΟΥΔΑΣΤΟΣ ΠΕΡΙ ΓΕΩΜΕΤΡΙΑΣ ΜΗΔΕΙΣ ΕΙΣΙΤΩ – proved to be a lucky omen indeed, and we are pleased to thank the Institute for creating optimal working conditions for us, and to thank all the knowledgeable colleagues working there for their help, advice, and support.

We are grateful to Erik Aurell for his commitment to Polish–Swedish collaboration; without him the book would never have been started. It is a pleasure to thank our colleagues with whom we have worked on related projects: Johan Brännlund, Åsa Ericsson, Sven Gnutzmann, Marek Kuś, Florian Mintert, Magdalena Sinołęcka, Hans-Jürgen Sommers and Wojciech Słomczyński. We are grateful to them, and to many others who helped us to improve the manuscript. If it never reached perfection, it was our fault, not theirs. Let us mention some of the others: Robert Alicki, Anders Bengtsson, Iwo Białynicki-Birula, Rafał Demkowicz-Dobrzański, Johan Grundberg, Sören Holst, Göran Lindblad, and Marcin Musz. We have also enjoyed constructive interactions with Matthias Christandl, Jens Eisert, Peter Harremoës, Michał, Paweł and Ryszard Horodecki, Vivien Kendon, Artur Łoziński, Christian Schaffner, Paul Slater, and William Wootters.

Five other people provided indispensable support: Martha and Jonas in Stockholm, and Jolanta, Jaś, and Marysia in Cracow.

Waterloo, 12 March 2005

Ingemar Bengtsson

Karol Życzkowski
Preface to the second edition

More than a decade has passed since we completed the first edition of the book. Much has happened during it. We have not tried to take all recent valuable contributions into account, but some of them can be found here. The Lieb conjecture for spin coherent states has been proved by Lieb and Solovej, and an important additivity conjecture for quantum channels has been disproved. Since these conjectures were discussed at some length in the first edition we felt we had to say more about them. However, our main concern with this second edition has been to improve explanations and to remove mistakes (while trying not to introduce new ones).

There are two new chapters: one of them is centred around the finite Weyl–Heisenberg group, and the discrete structures it gives rise to. The other tries to survey the vast field of multipartite entanglement, which was relegated to a footnote or two in the first edition. There are also a few new sections: They concern Gleason’s theorem and quantum contextuality, cross–sections and projections of the body of mixed quantum states, and the concentration of measure in high dimensions (which is needed to understand what is now Hastings’ non-additivity theorem).

We are grateful to several people who helped us with the work on this edition. It is a pleasure to thank Felix Huber, Pedro Lamberti and Marcus Müller for their comments on the first edition. We are indebted to Radosław Adamczak, Ole Andersson, Marcus Appleby, Adán Cabello, Runyao Duan, Shmuel Friedland, Dardo Goyeneche, David Gross, Michał and Paweł Horodeccy, Ted Jacobson, David Jennings, Marek Kuś, Ion Nechita, Zbigniew Puchała, Wojciech Roga, Adam Sawicki, Stanislaw Szarek, Stephan Weis, Andreas Winter, Iwona Wintrowicz, and Huangjun Zhu, for reading some fragments of the text and providing us with valuable remarks. Had they read all of it, we are sure that it would have been perfect! We thank Kate Blanchfield, Piotr Gawron, Lia Pugliese, Konrad Szymański, and Maria Życzkowska, for preparing for us two-dimensional figures and three-dimensional printouts, models and photos for the book.

We thank Simon Capelin and his team at Cambridge University Press for the long and fruitful work with us. Most of all we thank Martha and Jolanta for their understanding and infinite patience.

Toruń, 11 June 2016

Ingemar Bengtsson
Karol Życzkowski
Acknowledgements

Figures 4.10–13 and 16.1–3 have appeared already in our reference [112], which was published in the *International Journal of Physics* A17 Issue 31 (2002), coauthored with Johan Brännlund. They appear here with the kind permission of the copyright holder, World Scientific.

Figure 5.2 and the Figure accompanying the Hint to Problem 5.2 are reprinted from Dr. Kate Blanchfield’s PhD thesis, with the kind permission of its copyright holder and author.