Index

5HT (5-hydroxytryptamine) synthesis, 142
termination of action, 142–143
See also serotonin.
5HT1A receptor partial agonists atypical antipsychotics, 156–159
vilazodone, 300–302
5HT1B/D receptors effects of atypical antipsychotics, 159–160
terminal autoreceptors, 159–160
5HT2A receptor antagonists, 318 atypical antipsychotic actions, 142–156
effects on dopamine D2 receptors, 151–156
effects on extrapyramidal symptoms, 150
effects on prolactin levels, 150–151
stimulating downstream dopamine release, 142–150
5HT2A receptors blocking downstream dopamine release, 142–150
5HT2C receptor antagonists, 313–318
fluoxetine, 297
5HT2C receptors effects of atypical antipsychotics, 159–162
role in obesity treatment, 159
5HT3 receptor antagonists, 318–322, 500, 559
5HT3 receptors effects of atypical antipsychotics, 162
5HT6 receptor antagonists, 500
5HT6 receptors effects of atypical antipsychotics, 162
5HT7 receptors effects of atypical antipsychotics, 162–165
Abeta peptides role in Alzheimer’s disease, 505, 507, 509
ABT560, 500
acamprosate, 385, 417, 556–558
acetaminophen, 340
acetylation of histones, 24
acetylcholine, 5
as brain’s own nicotine, 543
basis for cholinesterase treatment of dementia, 522–528
colinergic pathways, 524
colinergic receptors, 523–528
precursors, 524
acetylcholine transporters, 523
acetylcholine vesicular transporter, 29
acetylcholinesterase, 46, 522–525
Adapin, 342
adenosine antagonist caffeine, 469
dipropafen, 565
adolescents bipolar disorder, 386
mania, 386
mood stabilizer selection, 386
affective disorders. See mood disorders. aggression disorders associated with, 85
impulsive–compulsive behavior in psychiatric disorders, 574
in schizophrenia, 84
agomelatine, 159, 313–317, 457
agonist action
G-protein-linked receptors, 35–36
ligand-gated ion channels, 56
agonist spectrum
G-protein-linked receptors, 35–43
ligand-gated ion channels, 56–64
agoraphobia
in children, 386
agouti-related peptide, 565
agouti-related protein, 565
akathisia, 95, 168
Akiskal, Hagop, 243
AKT (kinase enzyme)
in schizophrenia, 128
alcohol dependence, 551–559
alcoholism treatment, 468
allodynia, 425
allosteric modulation
ligand-gated ion channels, 65–67
almorexant (SB649868), 463
alopia
in schizophrenia, 82
alpha 1 adrenergic antagonists
atypical antipsychotics, 173
alpha 2 antagonists, 317–322
alpha 2 delta ligands
as anxiolytics, 403–405
alpha 2A adrenergic agonists
ADHD treatment, 495–499
alpha-melanocyte stimulating hormone (alpha-MSH), 565
alprazolam, 5, 49
Alzheimer’s dementia, 504
and psychosis, 79
Alzheimer’s disease acetylcholine as target for current symptomatic treatment, 522–527
aggressive and hostile symptoms, 85
amyloid as target of disease-modifying treatment, 520–523
amyloid cascade hypothesis, 505–509
basis for cholinesterase treatments, 522–528
beta amyloid plaques, 505–509
beta secretase inhibitors
ADHD treatment, 495–499
causes, 503–505
cholinergic deficiency hypothesis of amnesia in, 525
cholinesterase inhibitors, 525–527
clinical features, 503–505
cognitive symptoms, 85
diagnosis, 503–505
diagnostic categories for Alzheimer’s dementia, 519–520
donepezil, 529
galantamine, 527
gamma secretase inhibitors, 521–522
genetic studies, 509
glutamate hypothesis of cognitive deficiency, 527–534
immunotherapy research, 521
memantine, 527–531
neurofibrillary tangles, 505–509
neuroimaging biomarkers, 517–518
pathology, 503–505
positive symptoms, 85
Alzheimer’s disease (cont.)
possible Alzheimer’s dementia
category, 519–520
possible benefits of lithium, 519–520
prodromal stage, 515–519
range of proposed targets, 533–536
risk factors for disease
progression, 515
risk related to Apo-E, 509–510
rivastigmine, 526–527
role of Abeta peptides, 505, 507, 509
role of amyloid precursor protein
(APP), 505–507, 509
role of pathological tau, 508
search for a vaccine, 521
targeting glutamate, 527–531
testing of potential treatments,
533–536
treatments for psychiatric and
behavioral symptoms, 531–533
Alzheimer’s disease stages, 510–511
amyloidosis with
neurodegeneration and cognitive
decline, 519–520
amyloidosis with some
neurodegeneration, 515–519
asymptomatic amyloidosis, 511–515
dementia stage, 519–520
distinction of MCI from normal
aging, 515–519
first stage (preclinical), 511–515
mild cognitive impairment (MCI),
515–519
presymptomatic stage, 511–515
second stage, 515–519
symptomatic predementia stage,
515–519
third (final) stage, 519–520
amenorrhea, 95
amenopausal, 95
amitryptiline, 6, 342
amoxapine, 162, 342
AMPA receptor modulators, 228
AMPA receptors, 101–102
AMPAkinases, 228, 500
amphetamine, 34, 327, 547
ADHD treatment, 490–491
brain’s own (dopamine), 543
wake-promoting agent, 468
amygdala, 122
fear response, 392–395
neurobiology of fear, 392–395
neuroimaging in schizophrenia,
122–126
role in fear conditioning, 409–411
amyloid precursor protein (APP)
role in Alzheimer’s disease,
505–507, 509
amyotrophic lateral sclerosis
(ALS), 379
Anafranil, 342
analgesics
interactions with MAOIs, 340
anandamide, 5, 543, 561
anatomical basis of
neurotransmission, 1–2
anatomically addressed nervous
system, 1–2
anesthetics
interactions with MAOIs, 335
"angel dust". See phencyclidine (PCP)
anhedonia
in schizophrenia, 82
anorexia nervosa, 564
antagonist action
G-protein-linked receptors, 36–37
ligand-gated ion channels, 57–59
anticholinergics, 523
anticonvulsants, 73
as mood stabilizers, 373–380
antidepressant action, 47
atypical antipsychotics, 169–172
comparison with placebo in clinical
trials, 285
debate over efficacy, 285–287
definition of a treatment response,
285
discovery of, 6
disease progression in major
depression, 289
effects throughout the life
cycle, 289
efficacy in clinical trials, 285–287
failure to achieve remission, 287
general principles, 285–289
goal of sustained remission, 285
importance of achieving remission,
289
in "real world" trials, 289
STAR-D trial of antidepressants,
287
antidepressant augmenting agents,
346–353
brain stimulation techniques,
350–352
buspirone, 301–302
deep brain stimulation (DBS),
351–352
electroconvulsive therapy (ECT),
350
5-methylfolate, 346–350
psychotherapy as an epigenetic
"drug", 352–353
SAME (S-adenosyl-methionine), 350
thyroid hormones, 350
transcranial magnetic stimulation
(TMS), 350–351
antidepressant classes
5HT2C antagonist, 313–317
alpha 2 antagonists, 317–322
circadian rhythm resynchronizer,
313–317
metannergic action, 313–317
monoamine oxidase inhibitors
(MAOIs), 326–342
monoamine transporter blockers,
289–346
norepinephrine–dopamine
reuptake inhibitors (NDRIs),
309–312
selective norepinephrine reuptake
inhibitors (NRIs), 312–313
serotonin antagonist/reuptake
inhibitors (SARIs), 322–326
serotonin–norepinephrine
reuptake inhibitors (SNRIs),
302–309
serotonin partial agonist–
reuptake inhibitors (SPARIs),
300–302
serotonin selective reuptake
inhibitors (SSRIs), 290–300
tricyclic antidepressants, 312,
342–346
antidepressant-induced bipolar
disorder, 382
antidepressant-induced mood
disorders, 247–250
antidepressant “popo-out”, 245
antidepressant selection
arousal combos, 365
based on genetic testing, 361–362
based on weight of the evidence,
361–362
breastfeeding patient, 361
California rocket fuel (SNRI plus
mirtazapine), 363
combination therapies for
major depressive disorder,
362–365
combination therapies for
treatment-resistant depression,
362–365
depression treatment strategy,
284–285
equipeise situation, 361–362
evidence-based selection,
353–354
for pregnant patients, 357–361
for women based on life-cycle
stage, 357
for women of childbearing age,
357–361
postpartum patient, 361
symptom-based approach,
354–357
trial action combination
(SSRI/SNRI/NDRI), 362–363
Index
atypical antipsychotics (cont.)
metabolic disease risk, 173–180
mitigation of extrapyramidal
symptoms, ... 16–17
cancer chemotherapy, 162
cannabinoid 1 receptor (CB1), 6
cannabinoid CB1 receptor
antagonists, 559

Index
594

© in this web service Cambridge University Press

www.cambridge.org
cannabinoid receptors, 5–6, 556, 561
cannabinoids, 442
cannabis
and schizophrenia, 114
effects of, 561
carbamazepine, 49–50, 340, 373, 384, 386
in combinations of mood stabilizers, 383
mood-stabilizing properties, 375–376
possible mechanisms of action, 376
side effects, 376
cardiometabolic risk
atypical antipsychotics, 173–180
cariprazine, 159, 169
metabolic risk, 173
pharmacologic properties, 209–210
cataplexy
GHB treatment, 468
catatonic depression, 245
cerevastatin, 49
cFOS gene, 20
cGMP (cyclic guanosine monophosphate), 6
chemical neurotransmission, 1
communication at synapses, 6
excitation–secretion coupling, 6, 8–9
genome-to-genome
communication, 26–27
importance in
psychopharmacology, 5
neurotransmitters, 5–6
postsynaptic neuron, 6
presynaptic neuron, 6
role in psychopharmacology, 26
routes, 27
sequence, 74–77
targets for psychotropic drugs, 27
timescale of events, 27
chemically addressed nervous system, 5–8
childhood psychotic disorders
affective symptoms, 85
aggressive and hostile symptoms, 85
positive symptoms, 85
children
agoraphobia, 386
anxiety disorders, 386
bipolar disorder, 386
mood-stabilizer selection, 386
panic disorder, 386
pediatric mania, 386
cholinimpramine, 342
chloral hydrate, 559
chlorpheniramine, 335
chlorpromazine, 131, 141, 343
discovery of antipsychotic effects, 131–132
cholceystokinin, 565
cholesterol-lowering drugs
drug interactions, 49
choline
presynaptic transporter, 33
cholinergic deficiency hypothesis of amnesia in dementia, 525
cholinergic pathways, 524
cholinergic receptors, 523–528
cholinesterase inhibitors, 525–527
chorea, 95
chromatin
influence on gene expression, 24
chronic pain conditions, 420
association with psychiatric disorders, 422
effects on brain gray matter, 430–432
sources of, 420–422
chronic pain treatment
descending spinal synapses in the dorsal horn, 432–435
targeting ancillary symptoms in fibromyalgia, 440–441
targeting sensitized circuits, 435–441
chronic widespread pain, 428–429
circadian rhythms
disruption in depression, 313–317
effects of melatonergic hypnotics, 457
jet lag, 457
phase advance, 457
phase delay, 457
citalopram
enantiomers, 299
racemical ticalopram, 299–300
unique properties, 299
See also escitalopram.
cjun gene, 20
classical antipsychotics. See conventional antipsychotics.
clock genes, 313
clomipramine, 339–340, 343–344
clonidine, 560
Clopoxil, 131
diazapine, 48–50, 84, 156, 162, 171, 173–174, 176, 383
metabolic risk, 173
pharmacologic properties, 180–182
club drugs, 563
Coaxil, 342
cocaine, 34, 298, 543, 547
brain’s own (dopamine), 543
cocaine and amphetamine regulated transcripts (CART) peptides, 565
cocaine vaccine, 547
codrine, 49, 335, 340
cognitive behavioral therapy, 226, 353
for insomnia, 462
for obsessive–compulsive disorder (OCD), 575
for panic disorder, 416
for PTSD, 418
for social anxiety disorder, 417
cognitive remediation psychotherapy, 227
cognitive symptoms of schizophrenia, 83–85
community treatment programs, 227
compulsive eating and obesity, 563–573
compulsive hair pulling (trichotillomania), 575
compulsive shopping, 575
compulsive skin picking, 575
compulsivity
definition, 537–539
See also impulsive–compulsive disorders.
COMT (catechol-O-methyltransferase), 86, 257, 348
geneic variants, 348–350
genotype and vulnerability to worry, 395–397
cognitive disorganization in disorganized/excited psychosis, 80
conduct disorder, 386, 574
conduct disorders in children
aggressive and hostile symptoms, 85
constitutive activity
G-protein-linked receptors, 35
continuum disease model, 245–247
Contravle (bupropion/naltrexone), 571
conventional antipsychotics
ability to cause neurolepsis, 131–132
characteristic properties, 131–141
differences in side-effect profiles, 139–141
dilemma of blocking D2 receptors
in all dopamine pathways, 136–137
discovery of chlorpromazine effects, 131–132
disclosure of dopammin receptor antagonism, 132–133
drug-induced parkinsonism, 133–136
early discoveries, 131
extrapyramidal symptoms, 133–136
formulations, 141
high-potency agents, 141
histamine H1 receptor blockade, 139–141
hyperprolactinemia, 136
list of drugs, 131
low-potency agents, 141
muscarinic cholineric receptor blockade, 137–140
conventional antipsychotics (cont.)
neurolepsis caused by, 133
neuroleptic-induced deficit
syndrome, 133
prolactin... 80
disorientation, 80
excitement, 80
disorientation
in disorganized/excited
psychosis, 80
Index
596

© in this web service Cambridge University Press www.cambridge.org
disulfiram, 559
DMT (dimethyltryptamine), 562
DNA
function of “junk DNA”, 18
gene regulatory sections, 18
number of genes contained in, 18
DNA demethylases, 24
DNA methylation, 24
DNA methyltransferases (DNMT), 24
DNA transcription, 18
DNMT1 (DNA methyltransferase 1), 26
DNMT2 (DNA methyltransferase 2), 26
DNMT3 (DNA methyltransferase 3), 26
Dolmatil, 131
DOM (2,5-dimethoxy-4-methylamphetamine), 562
donepezil, 529
“dones”, 154, 162
pharmacologic properties, 202
dopa decarboxylase, 86, 257
dopamine, 5, 237
as brain’s own cocaine/amphetamine, 543
as neurotransmitter of hedonic pleasure, 542–543
norepinephrine precursor, 257
volume neurotransmission, 8
dopamine beta hydroxylase, 257
dopamine D2 receptor antagonists conventional antipsychotics, 132–133
effects of D2 receptor blockade, 133–137
dopamine D2 receptor partial agonists atypical antipsychotics, 165–169
dopamine D2 receptors, 86–89
effects of atypical antipsychotics, 150–156
dopamine hypothesis of schizophrenia, 86, 89–96
linking with the NMDA receptor hypofunction hypothesis, 111–113
dopamine pathways, 91
mesocortical dopamine pathway, 92–94
mesolimbic dopamine pathway, 89–92, 94–95
nigrostriatal dopamine pathway, 95
thalamic dopamine pathway, 96
tuberoinfundibular dopamine pathway, 95
dopamine receptors, 86–89
dopamine reuptake transporter pumps, 8
dopamine transporter (DAT), 8, 86
psychotropic drug target, 29–32
target for stimulants in ADHD, 491–496
dopamine vesicular transporter, 29
dopaminergic neurons, 86–89
DORA 1, 464
DORA 5, 464
DORA 22, 464
DORAs (dual orexin receptor antagonists), 463–464
dorsolateral prefrontal cortex (DLPFC), 122
in schizophrenia, 122–126
dothiapin, 342
doxepin, 342, 461
doxylamine, 459
drug abuse
aggressive and hostile symptoms, 85
drug abuse treatment, 463
drug addiction.
See impulsivity–compulsive disorders; substance addictions, 133–136
drug-induced parkinsonism, 133–136
drug-induced psychosis, 574
positive symptoms, 85
drug-induced psychotic disorder and psychosis, 79
drug interactions
and CYP450 enzymes, 46–51
drug metabolism
role of CYP450 (cytochrome P450) enzymes, 46–47
drugs
actions on neurotransmission, 5–6
similarities to natural neurotransmitters, 5–6
drugs of abuse, 339
stimulants, 491–492
ß-serine. See serine.
DSM (Diagnostic and Statistical Manual), x, 79
psychosis, 79
Research Domain Criteria, x
dual orexin receptor antagonists (DORAs), 463–464
duloxetine, 48
properties, 308–309
dysbindin gene, 115–121
dyskinesias, 95
dyssocial personality disorder, 574
dysthymia, 238
dystonia, 95
eating disorders, 290, 385, 563
“ecstasy” (MDMA), 30, 562
edivoxetine
norepinephrine reuptake inhibitor (NERI), 313
Elavil, 6, 342
electroconvulsive therapy (ECT)
use in depression, 350
EMPA (SORA-2 agent), 464
employment help with, 227
Endep, 342
endocannabinoids ("endogenous marijuana"), 6
endophenotypes
compulsivity, 539
impulsivity, 539
derphins, 559
as brain’s own morphine/heroin, 543
enkephalins, 559
enzyme inhibitors, 43–45
enzymes
irreversible inhibition, 43–45
psychotropic drug targets, 43–51
reversible inhibition, 43–45
EPA (eicosapentaenoic acid)
mood-stabilizing properties, 381
ephedrine, 573
epigenetics, 24–26
and gene expression, 24
as a potential treatment, 24
and schizophrenia, 114–115
definition, 24
effects of psychosis, 352–353
influence on the status quo of a cell, 26
molecular mechanisms of gene regulation, 24
epistasis, 348–350
neuroimaging in schizophrenia, 126–128
Epworth Sleepiness Scale, 465
ErbB4 gene, 115–121
ERK (extracellular signal regulated kinase), 18
ERK/AKT signal transduction cascade, 366
erthyromycin (antibiotic), 49
esicitalopram
unique properties, 300
eslicarbazepine
potential mood stabilizer, 377–379
estrogen replacement therapy (ERT), 307, 361
eszopiclone, 341, 453, 455
etchlovrin, 559
ethanamine, 559
etheymia, 238
excessive daytime sleepiness
causes and consequences, 465
mechanism of action of wake-promoting agents, 466–469
problems with cognitive performance, 465–466
excitation–secretion coupling, 6, 8–9
excitatory amino acid transporter (EAAT), 96, 101
excitatory amino acid transporters 1–5 (EAAT1-5), 33
excitement
in disorganized/excited psychosis, 80
experience-dependent development of synapses, 114–115
extrapyramidal nervous system, 95
family support, 227
fear conditioning, 408–411
role of the amygdala, 409–411
fear extinction, 411–413
fear memories
blocking reconsolidation of, 414–415
fenfluramine, 573
fibromyalgia, 425, 428–431
milnacipran treatment, 309
off-label use of GHB, 468
targeting ancillary symptoms, 440–441
first-generation antipsychotics
See conventional antipsychotics
flashbacks, 406
flumazenil, 403
fluoxetine, 6, 31, 49, 162, 182, 313, 340
SHT2C antagonist properties, 297
combined with olanzapine, 162
unique properties, 297
fluphenazine, 131
fluphenazine, 131
fluvasatin, 49
fluvoxamine, 48–49
sigma 1 receptor binding, 299
unique properties, 299
fMRI
imaging circuits in schizophrenia, 120–126
folute, 346, 348, 382
food addiction, 563–564
Fos protein, 20–21
"Foxy" (5-methoxy-diisopropyltryptamine), 562
frontotemporal dementia
cognitive symptoms, 85
G-protein-linked receptors
activity in absence of agonists, 35
agonist action, 35–36
agonist spectrum, 35–43
agonist action, 36–37
constitutive activity, 35
inverse agonist action, 42–43
partial agonist action, 37–42
pharmacologic subtypes, 35–43
psychotropic drug targets, 35–43
silent antagonists, 36–37
structure and function, 34–35
G-protein-linked signal transduction cascades, 11
activation of CREB, 16–17
influence on gene expression, 16–17
phosphoprotein messengers, 13–16
second messengers, 11–13
G proteins, 17
GABA (gamma aminobutyric acid), 5
binding to GABA_A sites, 66
effects of benzodiazepines, 66
role in anxiety disorders, 397–403
synthesis and storage, 397
GABA_A, positive allosteric modulators (PAMs), 453
and psychiatric insomnia, 455–459
insomnia treatment, 454–455
GABA receptors, 397–403
GABA transaminase, 397
GABA transporter (GAT), 397
GABA transporters, 33, 397–399
GABA vesicular transporter, 34
gabapentin, 71, 384–385, 403–405, 414, 437
properties, 379
galactorrhea, 95
galanin, 565
galantamine, 524, 527
Gamanil, 342
gambling disorder, 573
gamma hydroxybutyrate (GHB), 563
abuse potential, 468
date rape drug, 468
performance-enhancing drug, 468
wake-promoting agent, 468–470
gamma secretase inhibitors, 521–522
GAT1 transporter, 33
gate theory of pain, 425
gene effects
neuroimaging in schizophrenia, 126–128
gene expression
and epigenetics, 24
consequences of epigenetic influences, 26
effects of signal transduction cascades, 16–18
functions affected by, 18
influence of behavior on, 22–24
influence on behavior, 22–24
molecular mechanism, 18–24
molecular mechanisms of epigenetics, 24
regulatory sections of DNA, 18
result of neurotransmission, 18–24
role of chromatin, 24
triggered by phosphoprotein cascade, 16–18
gene transcription, 18–20
generalized anxiety disorder (GAD), 405
treatments, 414–415
genes
coding region, 18
immediate early genes, 20–21
late gene activation, 20–22
number in the human genome, 18
regulatory region, 18–20
genetic testing
aid to antidepressant selection, 361–362
genomes of neurons
communication between, 9–10
ghrelin, 565
glucon, 565
glucocorticoid antagonists, 365
glucocorticoid levels
effects of stress, 268–269
glutamate, 5
target in Alzheimer’s disease, 527–531
glutamate hypothesis of cognitive deficiency in Alzheimer’s disease, 527–534
glutamate pathways
cortico-accumbens, 103
cortico-brainstem, 103
cortico-cortical (direct), 106
cortico-cortical (indirect), 106
cortico-striatal, 103
cortico-thalamic, 106
hippocampal-accumbens, 105
thalamo-cortical, 106
glutamate receptors, 101–102
subtypes, 56
glutamate synthesis, 96
glutamate transporters, 33
glutaminase, 96
glutamine synthetase, 96
glutamine transporters, 96
glutethimide, 559
gluconeogenesis, 96
glycine agonists, 228
glycine synthesis, 96–98
glutethimide, 559
glycine agonists, 228
glycine synthesis, 96–98
glycine transporters, 33
GlyT1 inhibitors, 232
GSK3 (glycogen synthase kinase 3), 18
GSK3 (glycogen synthase kinase 3) inhibitors, 46
GSK372475 (triple reuptake inhibitor), 365
habits
as compulsive behavior, 539–541
as conditioned responses, 539–541
Index

Haldol, 131
hallucinations, 79–80
in schizophrenia, 81
hallucinogen addictions, 561–563
haloperidol, 131, 141
long-term use of hypnotics, 452–453
melatonergic hypnotics, 457
orexin antagonists, 463–465
compulsivity endophenotype, 539
definition of compulsivity, 537–539
definition of impulsivity, 537–539
eating disorders, 563–573
endophenotypes, 539
habit formation, 541–542
habits, 539–541
hypothetical shared neurobiology, 537
impulsivity endophenotype, 539
mesolimbic dopamine circuit as pathway of reward, 541–542
range of disorders, 537–538
stimulant addiction process, 543–547
substance addictions, 543–563
therapeutic challenge, 537
top-down prefrontal cortical inhibition, 539–541
ventral to dorsal migration of response, 541–543
impulsivity
definition, 539
in psychiatric conditions, 475
inactivation
ligand-gated ion channels, 64–65
indole-alkylamines, 562
inhalants as drugs of abuse, 563
insolit
mood-stabilizing properties, 381
insomnia
and slow-wave sleep, 463
caused by restless legs syndrome (RLS), 462
causes, 452
definitions, 452
insomnia treatment, 444
alpha 2 delta ligands, 462
benzodiazepine hypnotics, 452–455
chronic treatment for chronic insomnia, 452–457
cognitive behavioral therapy, 462
dopamine agonists, 462
doxepin, 461
dual orexin receptor antagonists (DORAs), 463–464
GABA_A positive allosteric modulators (PAMs), 453–455
histamine H1 receptor antagonists as hypnotics, 459–461
long-term use of hypnotics, 452–453
melatonergic hypnotics, 457
orexin antagonists, 463–465

Hippocampus
dysfunction in schizophrenia, 123
effects of stress, 268–269
histamine, 5
and the sleep/wake switch, 450–453
mechanisms of inactivation, 33
vesicular transporter, 29
histamine H1 receptor antagonists, 318
as hypnotics, 459–461
atypical antipsychotics, 174
histamine H1 receptors, 450–451
blockade by conventional antipsychotics, 139–141
histamine H2 receptors, 452
histamine H3 receptor antagonists, 500
histamine H3 receptors, 452
histamine H4 receptors, 452
histamine receptors
NMDA receptors, 452
histone acetylation, 24
histone deacetylases (HDACs), 24, 26
histone demethylases, 24
histone methylation, 24
histone methyltransferases, 24
histones deacetylation, 24
HIV/AIDS protease inhibitors, 49
reverse transcriptase inhibitors, 49
HMG-CoA reductase inhibitors, 49
hoarding behavior, 575
homocysteine, 348
hormone-linked signal transduction cascades, 11
influence on gene expression, 17
phosphoprotein messengers, 16
second messengers, 11
hormone response elements (HREs), 17
hormones, 5
hostile belligerence
in paranoid psychosis, 80
hostile symptoms
disorders associated with, 85
HPA (hypothalamic-pituitary-adrenal) axis, 365
abnormalities in depression, 313
abnormalities related to stress, 431
effects of stress, 268–269
fear response, 394
HT0712 (PDE4 inhibitor), 500
human genome
number of genes, 18
Hunter Serotonin Toxicity Criteria, 335
hydrocodone, 340, 559
hyperalgesia, 425
hyperarousal states, 406
hyperglycemic hyperosmolar syndrome
risk with atypical antipsychotics, 178–179
hyperkinetic movement disorders, 95
hypertension, 136, 150–151
hypersexual disorder, 573
hypersomnia
causes and consequences, 465
mechanism of action of wake-promoting agents, 466–469
problems associated with sleep deprivation, 465
problems with cognitive performance, 465–466
treatments, 445
hyperthermic temperament, 238
and mood disorders, 248–252
hypochondriasis, 575
hypomania, 238
antidepressant induced, 382
with depression, 248–250
hypothalamus
role in appetite regulation, 564
ICD (International Classification of Diseases), x, 79
psychosis, 79
ioperidone, 49–50, 159, 162, 173–174, 383
metabolic risk, 173
pharmacologic properties, 197–199
imipramine, 162, 342
immediate early genes, 20–21
impulse control disorders
aggressive and hostile symptoms, 85
impulsive–compulsive disorders
aggression and violence in psychiatric disorders, 574
behavior disorders, 573–575
bottom-up compulsive dorsal striatal drives, 539–541
bottom-up impulsive ventral striatal drives, 539–541
compulsion development in drug addiction, 541–542
Index

insomnia treatment (cont.)
sleep hygiene, 462
trazodone, 457–458
Z-drugs, 453–455
insulin, 565
intermittent explosive disorder, 574
Internet addiction, 573
interpersonal therapy, 353
intravenous immunoglobulin (IVIG)
Alzheimer’s disease trials, 521
G protein-linked receptors, 42–43
GABA-A/PAMs, 455–459
serotonergic hypnotics, 457–458
single orexin receptor antagonists (SORAs), 463–464
levodopa, 327
Lewy body dementia

cognitive symptoms, 85
licarbazepine, 377, 384
igid-gated ion channels, 52
adaptive states, 64–65
agonist spectrum, 56–64
allosteric modulation, 65–67
AMPA subtype, 56
antagonist action, 57–59
desensitization, 64–65
different receptor states, 64–65
full agonist action, 56
glutamate receptors, 56
inactivation, 64–65
inverse agonist action, 61–63
negative allosteric modulators
pentameric subtypes, 54–56
partial agonist action, 58–61
pentamer subtype, 54–56
positive allosteric modulators
(NAMs), 65–67
nicotinic cholinergic receptors, 65
NDMA subtype, 56
psychotropic drug targets, 54
regulation of opening and closing, 52–53
structure and function, 54–57
tetrameric subtypes, 56
lithium, 46, 339, 346, 386
and Alzheimer’s disease, 372
effects on suicidality, 372
for mild mania, 383
in combinations of mood stabilizers, 383
mood-stabilizing properties, 371–373
plus valproate, 374
possible mechanisms of action, 371–372
side effects, 372–373
locus coeruleus, 394, 463
lofepramine, 342
lorcaserin, 159
lorcaserin (Belviq), 571
loroxynil, 342
Lou Gehrig’s disease, 380
LuAA21004. See vortioxetine.
LuAA24530 (triple reuptake inhibitor), 365
Ludomi1, 342
lurasidone, 49–50, 159, 162, 165,
381, 383
in combinations of mood stabilizers, 385
metabolic risk, 173
pharmacologic properties, 199–202
LY2140023 (mGlur presynaptic antagonist/postsynaptic agonist), 228
LY293558 (AMPakine), 228
LY450139 (semagacestat), 521–522
LY451395 (AMPakine), 500
major depressive disorder, 165, 238, 248
affective symptoms, 85
as prodrome of Alzheimer’s disease, 518–519
disease progression concept, 289
in perimenopausal women, 307–308
symptom overlap with anxiety disorders, 389–391
use of combination antidepressant therapies, 362–365
mania, 237–238, 245
and psychosis, 79
antidepressant induced, 382
antimanic actions of atypical antipsychotics, 171
in children and adolescents, 386
mild mania, 383
symptoms and circuits, 278–279
See also mood disorders.
MAO. See monoamine oxidase.
MAOIs. See monoamine oxidase inhibitors.
MAPK (MAP kinase, mitogen activated protein kinase), 18
maprotiline, 312, 342–343
marijuana, 5
and schizophrenia, 114
brain’s own (anandamide), 543
effect on appetite, 564
effects of, 561
MC4R agonists, 571
MDMA (3,4-methylenedioxymethamphetamine), 30, 562
meclomibide, 333
mehylole, 563
MEK (MAP kinase/ERK kinase or mitogen-activated protein kinase kinase/extracellular signal-regulated kinase kinase), 17
melancholic depression, 245
melanin-concentrating hormone, 565

© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02598-1 — Stahl’s Essential Psychopharmacology
4th Edition
Index
More Information
melanocyte 4 receptors (MC4Rs), 565
melatonergic hypnotics, 457
melatonin, 457
melatonin secretion and depression, 238
rapid cycling, 238
related to substance abuse, 251
relationship to psychotic disorders, 243–247
Index

Index
mood disorders (cont.)
schizoaffective disorder, 243–247
schizo-bipolar disorder, 243–247
stress and depression, 268–273
unipolar depression, 237–238
mood stabilizer selection, 382–386
adolescents, 386
benzodiazepines, 385
Boston bipolar brew, 385
breastfeeding patient, 386
California careful cocktail, 385
carbamazepine combinations, 383
children, 386
combinations of mood stabilizers, 383–385
first-line treatments in bipolar disorder, 383
innovative “emergence-based” combinations, 385
Lami-quel combination, 385
lamotrigine combinations, 383, 385
lithium combinations, 383
monotherapy trials, 382–383
pregnant patient, 385–386
quetiapine combinations, 385
Tennessee mood shine, 385
valproate combinations, 383
women and bipolar disorder, 385–386
mood stabilizers
anticonvulsants, 373–380
antipsychotics, 373–381
armodafinil, 381
atypical antipsychotics, 380–381
benzodiazepines, 381
definitions, 370–371
future developments, 387
inositol, 381
lithium, 371–373
L-methylfolate, 382
modafinil, 381
omega-3 fatty acids (EPA and DHA), 381
risks related to antidepressants, 382
thyroid hormones, 382
morphine, 5, 335
brain’s own (endorphins), 543
motivational therapies, 227
motor disturbances in psychosis, 80
motor hyperactivity, 474
mRNA, 18
mTOR (mammalian target of rapamycin) pathway, 366
multi-infarct dementia
cognitive symptoms, 85
muscari, 523
muscarnic cholinergic receptors, 137–140
blockade by conventional antipsychotics, 137–140
nalmfene, 559
naloxone, 560
naltrexone, 385, 417, 547, 556, 560, 564
bupropion/naltrexone (Contrave), 569–571
NAMs (negative allosteric modulators), 65–67
narcolepsy, 463–464
GHB treatment, 468
Navane, 131
nefazodone, 49, 322
negative allosteric modulators
(NAMs), 65–67
nerve growth factor (NGF), 6
NET. See norepinephrine transporter.
neuregulin gene, 115–121
neurodegenerative disorders, 327–329
neurodevelopment
and ADHD, 480–487
neuroimaging
Alzheimer’s disease biomarkers, 517–518
circuits in schizophrenia, 120–126
epistasis in schizophrenia, 126–128
gene effects in schizophrenia, 126–128
mood disorders, 280–281
neuroleptic-induced deficit syndrome, 133
neuroleptic-induced tardive dyskinesia, 95
neuroleptic malignant syndrome, 136
neuroleptics, 131–132
neuron genomes
communication between, 9–10
neuronal circuits, 6
neurons
autoreceptors, 8
dysconnectivity in schizophrenia, 114–120
effects of malfunction, 2
excitation–secretion coupling, 8–9
functional alteration by drugs, 2
general structure of a neuron, 2
inputs from neuronal circuits, 6
inputs involving neurotransmitters, 6
nature of, 1–2
number in the human brain, 1–2
synapses, 1
neuropeptide Y, 565
neuropeptides, 5
mechanisms of inactivation, 33
neurotransmission
anatomical basis, 1–2
chemical basis, 5
classical type, 6
nonsynaptic diffusion type, 6–8
retrograde (reverse) type, 6
signal transduction cascades, 9–24
target for drug actions, 5–6
trigger for gene expression, 18–24
volume type, 6–8
See also chemical neurotransmission.
neurotransmitter receptor hypothesis of depression, 290–292
neurotransmitter transport
presynaptic reuptake, 28–29
sodium pump, 30–31
vesicular storage, 28–29
neurotransmitter transporters
high-affinity glutamate transporters, 29
intracellular synaptic vesicle transporters, 29–32
plasma membrane transporters, 29–30
psychotropic drug targets, 28–34
SLC1 gene family, 29–30
SLC6 gene family, 29–30
sodium/chloride-coupled transporters, 29
neurotransmitters, 5–6
as first messengers, 10
inputs to neurons, 6
location in synapses, 1
retrograde neurotransmitters, 6
similarities of drugs to, 5–6
neurotrophic factors
retrograde neurotransmitters, 6
neurotrophin-linked signal transduction cascades, 11
influence on gene expression, 17–18
phosphoprotein messengers, 13–16
second messengers, 11
nicotine, 523–524
brain’s own (acetylcholine), 543
effect on appetite, 564
effect on nicotinic cholinergic receptors, 65
nicotine addiction, 311, 547–553
nicotine dependence, 487
nicotinic cholinergic receptors, 523–524
desensitization, 65
effects of nicotine, 65
positive allosteric modulators (PAMs), 524
nicotinic receptor agonists, 500
nightmares, 406
nigrostriatal dopamine pathway, 95, 139
nitric oxide (NO)
retrograde neurotransmitter, 6
NMDA antagonists, 442
NMDA antagonists
potential treatment for mood disorders, 365–366
© in this web service Cambridge University Press
www.cambridge.org
NMDA neurotransmission, 232
NMDA receptor hypofunction
hypothesis of schizophrenia,
107–111
linking with the dopamine
hypothesis, 111–113
NMDA receptors, 99–102, 234
negative allosteric modulators
(NAMs), 67
nonselective cholinesterase, 522–525
nonsteroidal anti-inflammatory
drugs, 340
nonsynaptic diffusion
neurotransmission, 6–8
noradrenaline. See norepinephrine.
noradrenergic hyperactivity in anxiety, 406–410
noradrenergic neurons, 255–262
norepinephrine, 5, 237
regulation of 5HT release, 262
norepinephrine dopamine reuptake
inhibitors (NDRIs), 309–312
in triple action combination (SSRI/
SNRI/NDRI), 362–363
norepinephrine receptors, 258–262
norepinephrine reuptake inhibitors
(NERIs)
edivoxetine, 313
See also selective norepinephrine
reuptake inhibitors (SNRIs).
norepinephrine reuptake pump.
See norepinephrine transporter
norepinephrine transporter (NET),
86, 257–258
psychotropic drug target, 29–32
See also SNRIs, 306
norepinephrine transporter (NET) inhibition
selective NRIs, 312–313
norepinephrine vesicular
transporter, 29
norfluoxetine, 49, 341
Norpramin, 342
norquetiapine, 183–185
nortriptyline, 342–343
nucleosomes, 24
nucleus accumbens, 542
Nuvigil, 468

bupropion/naltrexone (Contrave),
569–571
lorcaserin (Belviq), 571
MCAR agonists, 571
metformin, 571
orlistat, 571
phentermine/topiramate ER
(Qsymia), 566–569
role of 5HT2C receptors, 159
tasofensine, 571
zonisamide, 571
obsessive–compulsive disorder
(OCD), 299, 346, 574–575
cognitive behavioral therapy, 575
olanzapine, 48, 159, 162, 173–174,
176, 313
5HT2C antagonist, 162
combined with fluoxetine, 162
metabolic risk, 173
pharmacologic properties, 182–183
omega-3 fatty acids (EPA and DHA)
mood-stabilizing properties, 381
OPC4392 (D2 partial agonist), 168
opioid addictions, 559–561
opiate antagonists, 559
opiates
interactions with MAOIs, 340
withdrawal syndrome, 560
opioids
interaction with MAOIs, 339
oppositional defiant disorder, 574
Orap, 131
orbital frontal cortex
link with impulsivity, 475
orexin, 565
orexin 1 receptors, 463–464
orexin 2 receptors, 463–464
orexin A, 463
orexin antagonists, 463–465
orexin B, 463
Org 24292 (AMPAkine), 228
Org 24448 (AMPAkine), 228
Org 25271 (AMPAkine), 228
Org 25501 (AMPAkine), 228
Org 25573 (AMPAkine), 228
Org-25935/SCH-900435 (GlyT1
inhibitor), 232
orlistat, 571
osteoarthritis, 425
oxcarbazepine, 340, 384
potential mood stabilizer, 377–379
oxycode, 559
pain
activation of nociceptive nerve
fibers, 422–423
allodynia, 425
as a psychiatric “vital sign”,
422, 441
associated with anxiety disorders,
427–428
associated with mood disorders,
427–428
association with psychiatric
disorders, 422
central mechanisms in neuropathic
pain, 425–428
central pain, 421–422
definitions, 420
definitions of pain states, 421
functions of, 420
gate theory of pain, 425
in children, 386
in the presence of emotional
symptoms, 427–428
low back pain treatment, 346
neuropathic pain, 423–426
nociceptive pathway, 422–423
“normal” pain, 423
peripheral mechanisms in
neuropathic pain, 425
peripheral pain, 422
psychic pain, 308–309
segmental central sensitization, 425
somatic pain, 308–309
sources of chronic pain conditions,
420–422
suprasegmental central
sensitization, 425–428, 431
“wind-up” response, 425
See also chronic pain conditions.
pain syndromes
fibromyalgia, 429–430
pain treatments, 429
duloxetine, 308–309
paliperidone, 48, 162
metabolic risk, 173
pharmacologic properties, 194–196
Pamelor, 342
PAMs. See positive allosteric
modulators
panic attacks, 346, 394, 406, 412
treatments, 415–416
panic disorder, 327, 405
in children, 386
treatments, 415–416
paranoid personality disorder, 245
paranoid projection
in paranoid psychosis, 80
paranoid psychosis
grandiose expansiveness, 80
hostile belligerence, 80
paranoid projection, 80
paraphilias, 573
Parkinson’s disease, 95, 167, 351
use of MAO-B inhibitors, 327–329
Parkinsonian dementia
cognitive symptoms, 85
Index

| parkinsonism | drug-induced, 133–136 |
| paroxetine | discontinuation reactions, 298–299 side effects, 298–299 unique properties, 298–299 partial agonist action |
neurotransmitter transporters, 28–34
range of targets, 28
sites of action, 28
vesicular transporters (SLC18 gene family), 34
pyromania, 573
Qsma (phentermine/topiramate ER), 566–569
quetiapine, 49–50, 156, 159, 162, 171, 173–174, 176, 300, 313, 381, 383, 460
effects at different doses, 185–189
effects in different formulations, 185
in combinations of mood stabilizers, 385
metabolic risk, 173
pharmacologic properties, 183–189
quinidine, 366
racemic citalopram, 299
radafoxine, 310
Raf (kinase), 17
ramelteon, 453, 457
rapacuronium, 335
rapid cycling in mood disorders, 238
antidepressant induced, 382
Ras protein, 17
rasagiline, 327
reoxygen, 312
recurrent thoughts, 395
Research Domain Criteria in DSM, x
use for diagnosis, 474
reserpine, 34
restless legs syndrome (RLS), 462
retrograde (reverse)
neurotransmission, 6
reverse transcriptase inhibitors (for HIV/AIDS), 49
reversible inhibitors of MAO-A (RIMAs), 333–335
reward pathway
mesolimbic dopamine circuit, 94–95, 542–543
RG1678 (bitopertin), 232, 234
RG3487 (acetylcholine booster), 500
rifampin, 49
riluzole, 384
properties, 379–380
rimonabant, 556, 561
risperidone, 48, 162, 171, 173, 385
metabolic risk, 173
pharmacologic properties, 190–194
See also paliperidone
rivastigmine, 526–527
RNA polymerase, 18–20
RNA translation, 20
ropinirole, 167, 385
RS4 gene, 116
RSK (ribosomal S6 kinase), 18
SAM-315 (5HT6 antagonist), 500
SAM-531 (5HT6 antagonist), 500
SAME (S-adenosyl-methionine), 24, 350
sarcosine (GlyT1 inhibitor), 232, 234
SB334867 (SORA-1 agent), 464
SB408124 (SORA-1 agent), 464
SB410220 (SORA-1 agent), 464
SB649868 (almorexant), 463
SB674042 (SORA-1 agent), 464
SB742457 (5HT6 antagonist), 500
SCH 1381252 (beta secretase inhibitor), 522
schizoaffective disorder, 243–247
affective symptoms, 85
and psychosis, 79
positive symptoms, 85
schizophrenic disorder, 243–247
schizoid personality disorder, 245
schizophrenia, 85
amygdala neuroimaging, 122–126
and psychosis, 79
brain circuits and symptom dimensions, 85–86
cardiovascular disease risk, 80–81
definition, 81
direct and indirect costs in the US, 81
dopamine hypothesis of, 86, 89–96
dorsolateral prefrontal cortex (DLPFC) neuroimaging, 122–126
dysconnectivity genes, 115–116
dysconnectivity of neurons, 114–120
environmental factors, 114–120
genetic risk factors, 114–120
hippocampal dysfunction, 123
incidence, 80
influence of epigenetics, 114–115
life expectancy of patients, 80–81
linking NMDA receptor hypofunction and dopamine hypotheses, 111–114
mortality rate, 80–81
neurodevelopmental factors, 114–120
neuroimaging circuits, 120–126
neuroimaging epistasis, 126–128
neuroimaging of gene effects, 126–128
neurotransmitters and pathways involved, 86–114
NMDA receptor hypofunction hypothesis of, 107–111
relationship to mood disorders, 243–247
risk genes, 115–116
suicide risk, 80–81
susceptibility genes, 114–120
treatment-resistant affective symptoms, 85
ventromedial prefrontal cortex (VMPFC) neuroimaging, 122–126
schizophrenia and dopamine, 86–96
dopaminergic neurons, 86–89
key dopamine pathways in the brain, 91
mesocortical dopamine pathway and affective symptoms, 92–94
dopamine neuroimaging and cognitive symptoms, 92–94
mesocortical dopamine pathway and cognitive symptoms, 92–94
mesocortical dopamine pathway and negative symptoms, 92–94
mesolimbic dopamine pathway and positive symptoms, 89–92
mesolimbic dopamine pathway and reward, 94–95
nigrostriatal dopamine pathway, 95
thalamic dopamine pathway, 96
tuberoinfundibular dopamine pathway, 95
schizophrenia and glutamate, 96–111
faulty NMDA synapses on GABA interneurons in prefrontal cortex, 107–111
glutamate receptors, 101–102
glutamate synthesis, 101–102
key glutamate pathways in the brain, 102–106
synthesis of serine, 96–101
synthesis of glutamate co-transmitters, 96–101
synthesis of glycine, 96–101
schizophrenia future treatments, 227–235
AMPK, 228
glycine agonists, 228
GlyT1 inhibitors, 232–234
mGluR presynaptic antagonists/postsynaptic agonists, 228
presymptomatic treatments, 235
prodromal treatments, 235
selective glycine reuptake inhibitors (SGRIs), 232–234
targeting cognitive symptoms, 235
schizophrenia symptoms
affective blunting or flattening, 82
affective symptoms, 83–84
schizophrenia symptoms (cont.)
aggressive symptoms, 84
alogia, 82
anhedonia, 82
asociality, 82
assessment of negative symptoms, 82
auditory hallucinations, 81
avolition, 82
cognitive symptoms, 83–85
delusions, 81
hallucinations, 81
in other disorders, 85
negative symptoms, 81–83, 113–114
positive symptoms, 81, 111–113
prodromal negative symptoms, 83
subcategorical by symptom dimensions, 83–85

treatment, 83
schizophrenia treatment
early discoveries of antipsychotic drugs, 131
psychotherapy and atypical antipsychotics, 226–227
See also antipsychotics: atypical antipsychotics; conventional antipsychotics.
schizophreniform disorder, 245
and psychosis, 79
schizotypal personality disorder, 245
scopolamine, 350, 523
seasonal affective disorder, 245
second-generation antipsychotics.
See atypical antipsychotics.
second-messenger formation, 11–13
sedating actions
atypical antipsychotics, 171–173
sedative hypnotic actions
atypical antipsychotics, 171–173
sedative hypnotics
addiction to, 559
selective glycine reuptake inhibitors (SGRIs), 101, 232–234, 413
selective melatonin agonists, 457
selective norepinephrine reuptake inhibitors (SNRIs)
atomoxetine, 312
reboxetine, 312
selegiline, 327, 333
self-injurious behaviors, 85
Selinc, 559
semagacestat (LY450139), 521–522
SEP-225289 (triple reuptake inhibitor), 365
Serentil, 131
serine hydroxymethyltransferase (SHMT), 101
D-serine synthesis, 96–101
D-serine transporter (D-SER-T), 101
1-serine transporter (SER-T), 101
serotonergic hypnotics, 457–458
serotonin, 5, 237
and anxiety, 405–406
synthesis, 142
termination of action, 142–143
See also 5HT (5-hydroxytryptamine).
serotonin antagonist/reuptake inhibitors (SARIs), 322–326
serotonin norepinephrine reuptake inhibitors (SNDRIs), 365
serotonin norepinephrine reuptake inhibitors (SNRIs), 302–309, 405
California rocket fuel (SNRI plus mirtazapine), 363
desvenlafaxine, 307–308
dopamine increase in the prefrontal cortex, 305–306
duloxetine, 308–309
effectiveness in postmenopausal women, 308
effects of NET inhibition, 305–306
in triple action combination (SSRI/SNRI/NDRI), 362–363
milnacipran, 309
venlafaxine, 306–307
serotonin partial agonist reuptake inhibitors (SPARIs)
vilazodone, 300–302
serotonin selective reuptake inhibitors (SSRIs), 290–300, 405
citalopram, 299
common features, 291–296
discontinuation reactions, 298–299
effectiveness in postmenopausal women, 308
escitalopram, 300
fluoxetine, 287
fluvoxamine, 299
in triple action combination (SSRI/SNRI/NDRI), 362–363
paroxetine, 298–299
SERT blockade, 291–296
sertraline, 297–298
unique properties of individual SSRIs, 296–300
serotonin toxicity/serotonin syndrome risk with MAOIs, 335–339
serotonin transporter (SERT), 6, 142
blockade by SSRIs, 291–296
psychotropic drug target, 29–32
serotonin vesicular transporter, 29
SERT. See serotonin transporter.
sertindole, 49–50
pharmacologic properties, 215
sertraline
dopamine receptor (DAT) inhibition, 297–298
sigma 1 receptor binding, 297–298
unique properties, 297–298
setipitiene, 318
sexual acting out, 85
sexual dysfunction, 95
shared psychotic disorder, 245
sibutramine, 573
sigma 1 receptor binding
fluvoxamine, 299
sertraline, 297–298
signal transduction cascades, 9–24
activation of CREB transcription factor, 16–17
forming a second messenger, 11–13
G-protein-linked systems, 11
hormone-linked systems, 11
ion-channel-linked systems, 11
kinases, 11, 13–18
molecular mechanism of gene expression, 18–24
neurotransmission trigger for gene expression, 18–24
neurotransmitter first messengers, 10
neurotrophin-linked systems, 11
phosphatases, 11, 13–17
phosphoprotein cascade triggering gene expression, 16–18
phosphoprotein messengers, 13–16
potential targets for psychotropic drugs, 11
range of genes targeted by, 18
sequence of messengers, 10–11
targets, 13
types of, 11
silent antagonist drug action, 36–37
simvastatin, 49
Sinequana, 342
single orexin receptor antagonists (SORAs), 463–464
SLC1 gene family transporters, 29, 33
SLC6 gene family transporters, 29, 33
monoamine transporters, 32
SLC17 gene family transporters, 29, 34
SLC18 gene family vesicular transporters
psychotropic drug targets, 34
SLC32 gene family transporters, 29, 34
sleep as a psychiatric “vital sign”, 444
effects of slow-wave sleep, 463
sleep and wakefulness
arousal spectrum, 445
role of histamine, 450–453
sleep/wake switch, 445–453
Index

sleep deprivation, 350
problems associated with, 465
sleepiness
causes and consequences, 465
mechanism of action of wake-promoting agents, 466–469
problems associated with sleep deprivation, 465
problems with cognitive performance, 465–466
slow-wave sleep
effects of, 463
smoking
effect on CYP450 1A2, 48
social anxiety disorder, 405
treatments, 416–417
social phobia, 327
sodium/chloride-coupled transporters, 29
sodium oxybate
wake-promoting agent, 468–470
sodium potassium ATPase (adenosine triphosphatase), 31
sodium pump, 30–31
solanezumab, 521
solute carrier gene families. See SLC gene families.
somatization, 575
SORA-1 agents, 464
SORA-2 agents, 464
SORAs (single orexin receptor antagonists), 463–464
specific neutral amino acid transporter (SNAT), 96–98, 100
SSR 241586 (GlyT1 inhibitor), 232
SSR 504734 (GlyT1 inhibitor), 232
SSRIs. See serotonin selective reuptake inhibitors.
Stablon, 342
STAR-D trial of antidepressants, 287
statins
drug interactions, 49
Stelazine, 131
ST-EAR D trial of antidepressants, 287
stimulants
drug interactions, 49
Stelazine, 131
stereotyped behaviors
impulsive–compulsive dimension, 574
stereotyped movement disorders
impulsive–compulsive dimension, 574
Sternbach criteria for serotonin toxicity, 335
Stevens–Johnson Syndrome, 376
stimulants, 468
ADHD treatment, 487–493
effects on appetite, 564
use as drugs of abuse, 491–492
stress, 365
and depression vulnerability genes, 269–273
and vulnerability to depression, 273
BDNF effects, 268–269
brain atrophy and depression, 268–269
effects of environmental stress, 273
effects on glucocorticoid levels, 268–269
effects on the hippocampus, 268–269
effects on the HPA (hypothalamic-pituitary-adrenal) axis, 268–269
stress sensitization of brain circuits, 409
substance abuse
mood disorders related to, 251
substance addictions, 543–563
alcohol dependence, 551–559
and the mesolimbic dopamine reward pathway, 542–543
barbiturates, 559
salt baths as synthetic stimulants, 563
carbamazepine, 563
development of compulsions, 541–542
hallucinogens, 561–563
inhalants, 563
marijuana, 561
nicotine, 547–553
opioid addictions, 559–561
sedative hypnotics, 559
stimulant addiction process, 543–547
tocene, 563
stimulant-induced psychotic disorders and psychosis, 79
substance use disorders, 385
subsyndromal/ultra-high-risk psychosis prodrome, 245
suicidality
antidepressant induced, 382
effects of lithium, 372
suicide, 85
in adolescents, 386
sulpiride, 131, 168
pharmacologic properties, 211
supplementary motor area, 474
suprachiasmatic nucleus (SCN), 313–317, 457
Surmontil, 342
suvorexant (MK-4305), 463–464
SV2A transporter, 34
symptom endophenotypes, x–xi
SYN114 (5HT6 agonist), 500
SYN120 (5HT6 agonist), 500
synapses, 1
asymmetric type, 1
axoaxonic type, 1
axodendritic type, 1
axosomatic type, 1
chemical neurotransmission process, 6
direction of communication, 1
dysconnectivity genes, 115–116
experience-dependent development, 114–115
location of, 1
location of neurotransmitter, 1
number in the human brain, 1–2
postsynaptic elements, 1
presynaptic elements, 1
synaptic vesicle transporters, 29–32
tapentadol, 340
tardive dyskinesia, 95
tasimelteon, 457
temper dysregulation, 386
temperaments
mood-related, 238
Tennessee mood shine (mood-shifting phenomenon), 376
therapeutic window
atypical antipsychotics, 152–154
thioridazine, 131
thioridazine, 49
thiothixene, 131
Thorazine, 131
thyroid hormones, 385
as antidepressant augmenting agents, 350
possible mood-stabilizing effect, 382
tiagabine, 33
tiapine, 342
tic disorders, 95
impulsive–compulsive dimension, 574
Tofranil, 342
toluene, 563
topiramate, 384–385, 559, 564
properties, 379
Tourette’s syndrome
impulsive–compulsive dimension, 574
toxic epidermal necrolysis, 376
trimadol, 339–340
transcranial magnetic stimulation (TMS), 350–351
transcription factors, 18–20
leucine zipper type, 20–21
tranylcypromine, 327
trazodone, 322–326, 341, 453
insomnia treatment, 457–458
trial-based therapy, 353
triazolam, 49
trichotillomania (compulsive hair pulling), 575
tricyclic antidepressants, 49, 159, 312, 342–346
antihistamine properties, 460
interactions with MAOIs, 339–340
potential for death in overdose, 343–346
side effects, 343–346
trifluoperazine, 131
Trilafon, 131
trimipramine, 342
triple reuptake inhibitors (TRIs), 365
TrilRima (CXT57), 335
Tryptrizol, 342
tryptophan, 142
tryptophan hydroxylase, 142, 346
tuberoinsubdural dopamine pathway, 95
tuberomammillary nucleus, 452, 463
“two pips and a rip”, 154, 162
pharmacologic properties, 211
type 2 diabetes
Alzheimer’s disease risk factor, 515
typical antipsychotics.
See conventional antipsychotics.
tyramine in the diet
interaction with MAOIs, 331–335
tyrosine, 86, 257
tyrosine hydroxylase, 86, 257, 346
tyrosine pump (transporter), 86
unipolar depression, 237–238
distinguishing from bipolar depression, 250–252
vabacaserin, 159
Valium (diazepam), 5
valproate, 341, 372–373, 384, 386
for mild mania, 383
in combinations of mood stabilizers, 383
mood-stabilizing properties, 373–375
possible mechanisms of action, 373–374
possible side effects in women, 385
side effects, 375
valproate sodium.
See valproate.
valproic acid.
See valproate.
venlafaxine, 385, 500, 549–551
vascular dementia, 504
cognitive symptoms, 85
vamotor symptoms in perimenopausal women, 307–308
vasopressin 1B antagonists, 365
venlafaxine, 48, 304
extended-release formulation, 307
properties, 306–307
venlafaxine XR, 307
ventromedial prefrontal cortex (VMPFC), 122
in schizophrenia, 122–126
vesicular acetylcholine transporter (VACHT), 29, 34
vesicular glutamate transporters (VGLUT), 29, 34, 115
vesicular inhibitory amino acid transporters (VIAATs), 29, 34, 397
vesicular monoamine transporter 2 (VMAT2), 30, 86, 142, 258
vesicular monoamine transporters (VMATs), 29
vesicular neurotransmitter transporters, 29–32
proton pump mechanism, 34
SLC18 gene family targets for psychotropic drugs, 34
subtypes and functions, 33–34
violence
impulsive–compulsive behavior in psychiatric disorders, 574
Vivactil, 342
vocational rehabilitation, 227
voltage-gated ion channels, 52
structure and function, 67–74
voltage-sensitive calcium channels (VSCCs), 9, 71–73
subtypes, 71–73
voltage-sensitive sodium channels (VSSCs), 9, 68–71
volume neurotransmission, 6–8
vortioxetine, 159, 162, 365, 500
wake-promoting agents
amphetamine, 468
armodafinil, 468
caffeine, 469
gamma hydroxybutyrate (GHB), 468–470
methylphenidate, 468
modafinil, 466–468
sodium oxybate, 468–470
stimulants, 468
Xyrem, 468–470
weight loss treatment, 463
Wellbutrin, 298
women
bipolar disorder and mood stabilizers, 385–386
possible side effects of valproate, 385
Xanax (alprazolam), 5
Xyrem, 468–470
Z-drugs, 341, 453–455, 559
zaleplon, 341, 453, 455
ziprasidone, 49–50, 159, 162, 171, 342
metabolic risk, 173
pharmacologic properties, 196–197
Zoloft, 298
zolpidem, 341, 453–455
zonisamide, 384–385, 564, 571
zopiclone, 343–455
zotepine, 48–50, 171
pharmacologic properties, 190
zuclopenthixol, 131