Modern psychopharmacology is largely the story of chemical neurotransmission. To understand the actions of drugs on the brain, to grasp the impact of diseases upon the central nervous system, and to interpret the behavioral consequences of psychiatric medicines, one must be fluent in the language and principles of chemical neurotransmission. The importance of this fact cannot be overstated for the student of psychopharmacology. This chapter forms the foundation for the entire book, and the roadmap for one’s journey through one of the most exciting topics in science today, namely the neuroscience of how disorders and drugs act upon the central nervous system.

Anatomical versus chemical basis of neurotransmission

What is neurotransmission? Neurotransmission can be described in many ways: anatomically, chemically, electrically. The *anatomical* basis of neurotransmission is neurons (Figures 1-1 through 1-3) and the connections between them, called synapses (Figure 1-4), sometimes also called the *anatomically addressed* nervous system, a complex of “hard-wired” synaptic connections between neurons, not unlike millions of telephone wires within thousands upon thousands of cables. The anatomically addressed brain is thus a complex wiring diagram, ferrying electrical impulses to wherever the "wire" is plugged in (i.e., at a synapse). Synapses can form on many parts of a neuron, not just the dendrites as axodendritic synapses, but also on the soma as axosomatic synapses, and even at the beginning and at the end of axons (axoaxonic synapses) (Figure 1-2). Such synapses are said to be “asymmetric” since communication is structurally designed to be in one direction; that is, anterograde from the axon of the first neuron to the dendrite, soma, or axon of the second neuron (Figures 1-2 and 1-3). This means that there are presynaptic elements that differ from postsynaptic elements (Figure 1-4). Specifically, neurotransmitter is packaged in the presynaptic nerve terminal like ammunition in a loaded gun, and then fired at the postsynaptic neuron to target its receptors.

Neurons are the cells of chemical communication in the brain. Human brains are comprised of tens of billions of neurons, and each is linked to thousands of other neurons. Thus, the brain has trillions of specialized connections known as synapses. Neurons...
have many sizes, lengths, and shapes that determine their functions. Localization within the brain also determines function. When neurons malfunction, behavioral symptoms may occur. When drugs alter neuronal function, behavioral symptoms may be relieved, worsened, or produced.

General structure of a neuron. Although this textbook will often portray neurons with a generic structure (such as that shown in Figures 1-1 through 1-3), the truth is that many neurons have unique structures depending upon where in the brain they are located and what their function is. All neurons have a cell body known as the soma, and are set up structurally to receive information from other neurons through dendrites, sometimes via spines on the dendrites and often through an elaborately branching “tree” of dendrites (Figure 1-2). Neurons are also set up structurally to send information to other neurons via an axon that forms presynaptic terminals as the axon passes by (en passant, Figure 1-1) or as the axon ends (presynaptic axon terminals, Figures 1-1 through 1-4).

Neurotransmission has an **anatomical infrastructure,** but it is fundamentally a very elegant **chemical** operation. Complementary to the anatomically addressed nervous system is the **chemically addressed** nervous system, which forms the **chemical** basis of neurotransmission: namely, how chemical signals...
are coded, decoded, transduced, and sent along the way. Understanding the principles of chemical neurotransmission is a fundamental requirement for grasping how psychopharmacologic agents work, because they target key molecules involved in neurotransmission. Drug targeting of specific chemical sites that influence neurotransmission is discussed in Chapters 2 and 3.

Understanding the chemically addressed nervous system is also a prerequisite for becoming a "neurobiologically informed" clinician: that is, being able to translate exciting new findings on brain circuitry, functional neuroimaging, and genetics into clinical practice, and potentially improving the manner in which psychiatric disorders and their symptoms are diagnosed and treated. The chemistry of neurotransmission in specific

Figure 1-2. Axodendritic, axosomatic, and axoaxonic connections. After neurons migrate, they form synapses. As shown in this figure, synaptic connections can form not just between the axon and dendrites of two neurons (axodendritic) but also between the axon and the soma (axosomatic) or the axons of the two neurons (axoaxonic). Communication is anterograde from the axon of the first neuron to the dendrite, soma, or axon of the second neuron.
Figure 1-3. Classic synaptic neurotransmission. In classic synaptic neurotransmission, stimulation of a presynaptic neuron (e.g., by neurotransmitters, light, drugs, hormones, nerve impulses) causes electrical impulses to be sent to its axon terminal. These electrical impulses are then converted into chemical messengers and released to stimulate the receptors of a postsynaptic neuron. Thus, although communication within a neuron can be electrical, communication between neurons is chemical.
brain regions and how these principles are applied to various specific psychiatric disorders and treated with various specific psychotropic drugs are discussed throughout the rest of the book.

Principles of chemical neurotransmission

Neurotransmitters

There are more than a dozen known or suspected neurotransmitters in the brain. For psychopharmacologists, it is particularly important to know the six key neurotransmitter systems targeted by psychotropic drugs:

- serotonin
- norepinephrine
- dopamine
- acetylcholine
- glutamate
- GABA (γ-aminobutyric acid)

Each is discussed in detail in the clinical chapters related to the specific drugs that target them. Other neurotransmitters that are also important neurotransmitters and neuromodulators, such as histamine and various neuropeptides and hormones, are mentioned in brief throughout the relevant clinical chapters in this textbook.

Some neurotransmitters are very similar to drugs and have been called “God’s pharmacopeia.” For example, it is well known that the brain makes its own morphine (i.e., β-endorphin) and its own marijuana (i.e., anandamide). The brain may even make its own antidepressants, anxiolytics, and hallucinogens. Drugs often mimic the brain’s natural neurotransmitters, and some drugs have been discovered prior to the natural neurotransmitter. Thus, morphine was used in clinical practice before the discovery of β-endorphin; marijuana was smoked before the discovery of cannabinoid receptors and anandamide; the benzodiazepines Valium (diazepam) and Xanax (alprazolam) were
prescribed before the discovery of benzodiazepine receptors; and the antidepressants Elavil (amitriptyline) and Prozac (fluoxetine) entered clinical practice before molecular clarification of the serotonin transporter site. This underscores the point that the great majority of drugs that act in the central nervous system act upon the process of neurotransmission. Indeed, this apparently occurs at times in a manner that can mimic the actions of the brain itself, when the brain uses its own chemicals.

Input to any neuron can involve many different neurotransmitters coming from many different neuronal circuits. Understanding these inputs to neurons within functioning circuits can provide a rational basis for selecting and combining therapeutic agents. This theme is discussed extensively in each chapter on the various psychiatric disorders. The idea is that for the modern psychopharmacologist to influence abnormal neurotransmission in patients with psychiatric disorders, it may be necessary to target neurons in specific circuits. Since these networks of neurons send and receive information via a variety of neurotransmitters, it may therefore be not only rational but necessary to use multiple drugs with multiple neurotransmitter actions for patients with psychiatric disorders, especially if single agents with single neurotransmitter mechanisms are not effective in relieving symptoms.

Neurotransmission: classic, retrograde, and volume

Classic neurotransmission begins with an electrical process by which neurons send electrical impulses from one part of the cell to another part of the same cell via their axons (see neuron A in Figure 1-3). However, these electrical impulses do not jump directly to other neurons. Classic neurotransmission between neurons involves one neuron hurling a chemical messenger, or neurotransmitter, at the receptors of a second neuron (see the synapse between neuron A and neuron B in Figure 1-3). This happens frequently but not exclusively at the sites of synaptic connections. In the human brain, a hundred billion neurons each make thousands of synapses with other neurons for an estimated trillion chemically neurotransmitting synapses.

Communication between all these neurons at synapses is chemical, not electrical. That is, an electrical impulse in the first neuron is converted to a chemical signal at the synapse between it and a second neuron, in a process known as excitation–secretion coupling, the first stage of chemical neurotransmission. This occurs predominantly but not exclusively in one direction, from the presynaptic axon terminal to a second postsynaptic neuron (Figures 1-2 and 1-3). Finally, neurotransmission continues in the second neuron either by converting the chemical information from the first neuron back into an electrical impulse in the second neuron, or, perhaps more elegantly, by the chemical information from the first neuron triggering a cascade of further chemical messages within the second neuron to change that neuron’s molecular and genetic functioning (Figure 1-3).

An interesting twist to chemical neurotransmission is the discovery that postsynaptic neurons can also “talk back” to their presynaptic neurons. They can do this via retrograde neurotransmission from the second neuron to the first at the synapse between them (Figure 1-5, right panel). Chemicals produced specifically as retrograde neurotransmitters at some synapses include the endocannabinoids (EC), also known as “endogenous marijuana”), which are synthesized in the postsynaptic neuron. They are then released and diffuse to presynaptic cannabinoid receptors such as the CB1 or cannabinoid 1 receptor (Figure 1-5, right panel). Another retrograde neurotransmitter is the gaseous neurotransmitter NO, or nitric oxide, which is synthesized postsynaptically and then diffuses out of the postsynaptic membrane and into the presynaptic membrane to interact with cyclic guanosine monophosphate (cGMP)-sensitive targets there (Figure 1-5, right panel). A third group of retrograde neurotransmitters are neurotrophic factors such as NGF (nerve growth factor), which is released from postsynaptic sites and then diffuses to the presynaptic neuron, where it is taken up into vesicles and transported all the way back to the cell nucleus via retrograde transport systems to interact with the genome there (Figure 1-5, right panel). What these retrograde neurotransmitters have to say to the genome and how this modifies or regulates the communication between pre- and postsynaptic neurons are subjects of intense active investigation.

In addition to “reverse” or retrograde neurotransmission at synapses, some neurotransmission does not need a synapse at all! Neurotransmission without a synapse is called volume neurotransmission, or non-synaptic diffusion neurotransmission (examples are shown in Figures 1-6 through 1-8). Chemical messengers sent by one neuron to another can spill over to
sites distant to the synapse by diffusion (Figure 1-6). Thus, neurotransmission can occur at any compatible receptor within the diffusion radius of the neurotransmitter, not unlike modern communication with cellular telephones, which function within the transmitting radius of a given cell (Figure 1-6). This concept is part of the chemically addressed nervous system, and here neurotransmission occurs in chemical “puffs.” The brain is thus not only a collection of wires but also a sophisticated “chemical soup.” The chemically addressed

Figure 1-5. Retrograde neurotransmission. Not all neurotransmission is classic or anterograde or from top to bottom — namely, presynaptic to postsynaptic (left). Postsynaptic neurons may also communicate with presynaptic neurons from the bottom to the top via retrograde neurotransmission, from postsynaptic neuron to presynaptic neuron (right). Some neurotransmitters produced specifically as retrograde neurotransmitters at some synapses include the endocannabinoids (ECs, or “endogenous marijuana”), which are synthesized in the postsynaptic neuron, released, and diffuse to presynaptic cannabinoid receptors such as the cannabinoid 1 receptor (CB1), the gaseous neurotransmitter nitric oxide (NO), which is synthesized postsynaptically and then diffuses both out of the postsynaptic membrane and into the presynaptic membrane to interact with cyclic guanosine monophosphate (cGMP)-sensitive targets there and neurotrophic factors such as nerve growth factor (NGF), which is released from postsynaptic sites and diffuses to the presynaptic neuron, where it is taken up into vesicles and transported all the way back to the cell nucleus via retrograde transport systems to interact with the genome there.
nervous system is particularly important in mediating the actions of drugs that act at various neurotransmitter receptors, since such drugs will act wherever there are relevant receptors, and not just where such receptors are innervated with synapses by the anatomically addressed nervous system. Modifying volume neurotransmission may indeed be a major way in which several psychotropic drugs work in the brain.

A good example of volume neurotransmission is dopamine action in the prefrontal cortex. Here there are very few dopamine reuptake pumps in the prefrontal cortex, dopamine is available to diffuse to nearby receptor sites. Thus, dopamine released from a synapse (arrow 1) targeting postsynaptic neuron A is free to diffuse further in the absence of a reuptake pump and can reach dopamine receptors on that same neuron but outside of the synapse from which it was released, on neighboring dendrites (arrow 2). Shown here is dopamine also reaching extrasynaptic receptors on a neighboring neuron (arrow 3).

Another important example of volume neurotransmission is at the sites of autoreceptors on monoamine neurons (Figure 1-8). At the somatodendritic end of the neuron (top of the neurons in Figure 1-8) are autoreceptors that inhibit the release of neurotransmitter from the axonal end of the neuron (bottom of the neurons in Figure 1-8). Although some recurrent axon collaterals and other monoamine neurons may directly innervate somatodendritic receptors, these so-called somatodendritic autoreceptors also receive neurotransmitter from dendritic release (Figure 1-8, middle and right panels). There is no synapse here, just neurotransmitter leaked from the neuron upon its own receptors. The nature of a neuron’s regulation by its somatodendritic autoreceptors is a subject of intense interest, and is theoretically linked to the mechanism of action of many antidepressants, as will be explained in Chapter 7. The take-home point here is that not all chemical neurotransmission occurs at synapses.

Excitation–secretion coupling
An electrical impulse in the first – or presynaptic – neuron is converted into a chemical signal at the synapse by a process known as excitation–secretion...
coupling. Once an electrical impulse invades the presynaptic axon terminal, it causes the release of chemical neurotransmitter stored there (Figures 1-3 and 1-4). Electrical impulses open ion channels – both voltage-sensitive sodium channels (VSSCs) and voltage-sensitive calcium channels (VSCCs) – by changing the ionic charge across neuronal membranes. As sodium flows into the presynaptic nerve through sodium channels in the axon membrane, the electrical charge of the action potential moves along the axon until it reaches the presynaptic nerve terminal, where it also opens calcium channels. As calcium flows into the presynaptic nerve terminal, it causes synaptic vesicles anchored to the inner membrane to spill their chemical contents into the synapse. The way is paved for chemical communication by previous synthesis of neurotransmitter and storage of neurotransmitter in the first neuron’s presynaptic axon terminal.

Excitation–secretion coupling is thus the way that the neuron transduces an electrical stimulus into a chemical event. This happens very quickly once the electrical impulse enters the presynaptic neuron. It is also possible for the neuron to transduce a chemical message from a presynaptic neuron back into an electrical chemical message in the postsynaptic neuron by opening ion channels linked to neurotransmitters there. This also happens very quickly when chemical neurotransmitters open ion channels that change the flow of charge into the neuron, and ultimately, action potentials in the postsynaptic neuron. Thus, the process of neurotransmission is constantly transducing chemical signals into electrical signals, and electrical signals back into chemical signals.

Signal transduction cascades

Overview

Neurotransmission can be seen as part of a much larger process than just the communication of a presynaptic axon with a postsynaptic neuron at the...
synapse between them. That is, neurotransmission can also be seen as communication from the genome of the presynaptic neuron (neuron A in Figure 1-3) to the genome of the postsynaptic neuron (neuron B in Figure 1-3), and then back from the genome of the postsynaptic neuron to the genome of the presynaptic neuron via retrograde neurotransmission (right panel in Figure 1-5). Such a process involves long strings of chemical messages within both presynaptic and postsynaptic neurons, called signal transduction cascades.

Signal transduction cascades triggered by chemical neurotransmission thus involve numerous molecules, starting with neurotransmitter first messenger, and proceeding to second, third, fourth, and more messengers (Figures 1-9 through 1-30). The initial events occur in less than a second, but the long-term consequences are mediated by downstream messengers that take hours to days to activate, yet can last for many days or even for the lifetime of a synapse or neuron (Figure 1-10). Signal transduction cascades are somewhat akin to a molecular “pony express” with specialized molecules acting as a sequence of riders, handing on the message to the next specialized molecule, until the message has reached a functional destination, such as gene expression or activation of otherwise “sleeping” and inactive molecules (see for example, Figures 1-9 through 1-19).

Figure 1-9. Signal transduction cascade. The cascade of events that occurs following stimulation of a postsynaptic receptor is known as signal transduction. Signal transduction cascades can activate third-messenger enzymes known as kinases, which add phosphate groups to proteins to create phosphoproteins (on the left). Other signal transduction cascades can activate third-messenger enzymes known as phosphatases, which remove phosphates from phosphoproteins (on the right). The balance between kinase and phosphatase activity, signaled by the balance between the two neurotransmitters that activate each of them, determines the degree of downstream chemical activity that gets translated into diverse biological responses, such as gene expression and synaptogenesis.