An Introduction to Continuum Mechanics, Second Edition

This best-selling textbook presents the concepts of continuum mechanics in a simple yet rigorous manner. The book introduces the invariant form as well as the component form of the basic equations and their applications to problems in elasticity, fluid mechanics, and heat transfer and offers a brief introduction to linear viscoelasticity. The book is ideal for advanced undergraduates and beginning graduate students looking to gain a strong background in the basic principles common to all major engineering fields and for those who will pursue further work in fluid dynamics, elasticity, plates and shells, viscoelasticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics, mechanobiology, and nanoscience. The book features derivations of the basic equations of mechanics in invariant (vector and tensor) form and specification of the governing equations to various coordinate systems, and numerous illustrative examples, chapter summaries, and exercise problems. This second edition includes additional explanations, examples, and problems.

J. N. Reddy is a University Distinguished Professor, Regents Professor, and Oscar S. Wyatt Endowed Chair in the Department of Mechanical Engineering at Texas A&M University. Dr. Reddy is internationally known for his contributions to theoretical and applied mechanics and computational mechanics. He is the author of more than 450 journal papers and 17 books. Dr. Reddy is the recipient of numerous awards, including the Walter L. Huber Civil Engineering Research Prize of the American Society of Civil Engineers, the Worcester Reed Warner Medal and the Charles Russ Richards Memorial Award of the American Society of Mechanical Engineers, the 1997 Archie Higdon Distinguished Educator Award from the American Society of Engineering Education, the 1998 Nathan M. Newmark Medal from the American Society of Civil Engineers, the 2000 Excellence in the Field of Composites from the American Society of Composites, the 2003 Bush Excellence Award for Faculty in International Research from Texas A&M University, and the 2003 Computational Solid Mechanics Award from the U.S. Association of Computational Mechanics. Dr. Reddy received an Honoris Causa from the Technical University of Lisbon, Portugal, in 2009 and an honorary degree from Odlar Yurdu University, Baku, Azerbaijan, in 2011. Dr. Reddy is a Fellow of AIAA, ASCE, ASME, American Academy of Mechanics, the American Society of Composites, the U.S. Association of Computational Mechanics, the International Association of Computational Mechanics, and the Aeronautical Society of India. Dr. Reddy is the Editor-in-Chief of Mechanics of Advanced Materials and Structures, International Journal of Computational Methods in Engineering Science and Mechanics, and International Journal of Structural Stability and Dynamics. He also serves on the editorial boards of more than two dozen other journals, including International Journal for Numerical Methods in Engineering, Computer Methods in Applied Mechanics and Engineering, and International Journal of Non-Linear Mechanics. Dr. Reddy is one of the selective researchers in engineering around the world who is recognized by ISI Highly Cited Researchers with 10,000-plus citations with an H-index of more than 50.
An Introduction to Continuum Mechanics, Second Edition

J. N. REDDY

Texas A & M University
To

Rohan, Asha, and Mira

Who have filled my life with joy
Contents

List of Symbols ... xvii
Preface to the Second Edition xxiii
Preface to the First Edition xxv
About the Author .. xxvii

1 INTRODUCTION .. 1
1.1 Continuum Mechanics 1
1.2 A Look Forward 4
1.3 Summary ... 5
 Problems ... 6

2 VECTORS AND TENSORS 9
2.1 Background and Overview 9
2.2 Vector Algebra 10
 2.2.1 Definition of a Vector 10
 2.2.1.1 Vector addition 11
 2.2.1.2 Multiplication of a vector by a scalar ... 11
 2.2.1.3 Linear independence of vectors 11
 2.2.2 Scalar and Vector Products 12
 2.2.2.1 Scalar product 12
 2.2.2.2 Vector product 13
 2.2.2.3 Triple products of vectors 16
 2.2.3 Plane Area as a Vector 17
 2.2.4 Reciprocal Basis 19
 2.2.4.1 Components of a vector 19
 2.2.4.2 General basis 19
 2.2.4.3 Orthonormal basis 21
 2.2.4.4 The Gram–Schmidt orthonormalization ... 22
 2.2.5 Summation Convention 23
 2.2.5.1 Dummy index 24
 2.2.5.2 Free index 24
 2.2.5.3 Kronecker delta 25
 2.2.5.4 Permutation symbol 25
 2.2.6 Transformation Law for Different Bases 28
 2.2.6.1 General transformation laws 28
 2.2.6.2 Transformation laws for orthonormal systems ... 29
CONTENTS

2.3 Theory of Matrices ... 31
 2.3.1 Definition .. 31
 2.3.2 Matrix Addition and Multiplication of a Matrix by a Scalar . 32
 2.3.3 Matrix Transpose 33
 2.3.4 Symmetric and Skew Symmetric Matrices 33
 2.3.5 Matrix Multiplication 34
 2.3.6 Inverse and Determinant of a Matrix 36
 2.3.7 Positive-Definite and Orthogonal Matrices 39

2.4 Vector Calculus .. 40
 2.4.1 Differentiation of a Vector with Respect to a Scalar 40
 2.4.2 Curvilinear Coordinates 42
 2.4.3 The Fundamental Metric 43
 2.4.4 Derivative of a Scalar Function of a Vector 44
 2.4.5 The Del Operator 45
 2.4.6 Divergence and Curl of a Vector 47
 2.4.7 Cylindrical and Spherical Coordinate Systems 51
 2.4.8 Gradient, Divergence, and Curl Theorems 52

2.5 Tensors .. 53
 2.5.1 Dyads and Dyadics 53
 2.5.2 Nonion Form of a Second-Order Tensor 54
 2.5.3 Transformation of Components of a Tensor 57
 2.5.4 Higher-Order Tensors 58
 2.5.5 Tensor Calculus ... 59
 2.5.6 Eigenvalues and Eigenvectors
 2.5.6.1 Eigenvalue problem 62
 2.5.6.2 Eigenvalues and eigenvectors of a real symmetric tensor . 62
 2.5.6.3 Spectral theorem 64
 2.5.6.4 Calculation of eigenvalues and eigenvectors 64

2.6 Summary .. 72

Problems .. 73

3 KINEMATICS OF CONTINUA .. 81

3.1 Introduction ... 81
CONTENTS

3.2 Descriptions of Motion ... 82
 3.2.1 Configurations of a Continuous Medium 82
 3.2.2 Material Description ... 83
 3.2.3 Spatial Description .. 85
 3.2.4 Displacement Field .. 88

3.3 Analysis of Deformation .. 89
 3.3.1 Deformation Gradient ... 89
 3.3.2 Isochoric, Homogeneous, and Inhomogeneous Deformations ... 93
 3.3.2.1 Isochoric deformation 93
 3.3.2.2 Homogeneous deformation 93
 3.3.2.3 Nonhomogeneous deformation 95
 3.3.3 Change of Volume and Surface 96
 3.3.3.1 Volume change .. 96
 3.3.3.2 Area change ... 97

3.4 Strain Measures .. 98
 3.4.1 Cauchy–Green Deformation Tensors 98
 3.4.2 Green–Lagrange Strain Tensor 100
 3.4.3 Physical Interpretation of Green–Lagrange Strain Components 101
 3.4.4 Cauchy and Euler Strain Tensors 103
 3.4.5 Transformation of Strain Components 106
 3.4.6 Invariants and Principal Values of Strains 109

3.5 Infinitesimal Strain Tensor and Rotation Tensor 111
 3.5.1 Infinitesimal Strain Tensor 111
 3.5.2 Physical Interpretation of Infinitesimal Strain Tensor Components ... 112
 3.5.3 Infinitesimal Rotation Tensor 114
 3.5.4 Infinitesimal Strains in Cylindrical and Spherical Coordinate Systems ... 116
 3.5.4.1 Cylindrical coordinate system 117
 3.5.4.2 Spherical coordinate system 117

3.6 Velocity Gradient and Vorticity Tensors 118
 3.6.1 Definitions .. 118
 3.6.2 Relationship Between \mathbf{D} and \mathbf{E} 119
3.7 Compatibility Equations 120
 3.7.1 Preliminary Comments 120
 3.7.2 Infinitesimal Strains 121
 3.7.3 Finite Strains . 125
3.8 Rigid-Body Motions and Material Objectivity 125
 3.8.1 Superposed Rigid-Body Motions 125
 3.8.1.1 Introduction and rigid-body transformation 125
 3.8.1.2 Effect on F . 128
 3.8.1.3 Effect on C and E 128
 3.8.1.4 Effect on L and D 129
 3.8.2 Material Objectivity 129
 3.8.2.1 Observer transformation 129
 3.8.2.2 Objectivity of various kinematic measures 130
 3.8.2.3 Time rate of change in a rotating frame of reference . . 131
3.9 Polar Decomposition Theorem 132
 3.9.1 Preliminary Comments 132
 3.9.2 Rotation and Stretch Tensors 132
 3.9.3 Objectivity of Stretch Tensors 138
3.10 Summary . 139

Problems . 140

4 STRESS MEASURES . 151
 4.1 Introduction . 151
 4.2 Cauchy Stress Tensor and Cauchy’s Formula 151
 4.2.1 Stress Vector . 151
 4.2.2 Cauchy’s Formula 152
 4.2.3 Cauchy Stress Tensor 153
 4.3 Transformation of Stress Components and Principal Stresses . . 157
 4.3.1 Transformation of Stress Components 157
 4.3.1.1 Invariants . 157
 4.3.1.2 Transformation equations 157
 4.3.2 Principal Stresses and Principal Planes 160
 4.3.3 Maximum Shear Stress 162
CONTENTS

4.4 Other Stress Measures .. 164
 4.4.1 Preliminary Comments 164
 4.4.2 First Piola–Kirchhoff Stress Tensor 164
 4.4.3 Second Piola–Kirchhoff Stress Tensor 165

4.5 Equilibrium Equations for Small Deformations 169

4.6 Objectivity of Stress Tensors 171
 4.6.1 Cauchy Stress Tensor 171
 4.6.2 First Piola–Kirchhoff Stress Tensor 172
 4.6.3 Second Piola–Kirchhoff Stress Tensor 172

4.7 Summary ... 172

Problems .. 173

5 CONSERVATION AND BALANCE LAWS 181

5.1 Introduction .. 181

5.2 Conservation of Mass ... 182
 5.2.1 Preliminary Discussion 182
 5.2.2 Material Time Derivative 182
 5.2.3 Vector and Integral Identities 184
 5.2.3.1 Vector identities 184
 5.2.3.2 Integral identities 185
 5.2.4 Continuity Equation in the Spatial Description 185
 5.2.5 Continuity Equation in the Material Description 191
 5.2.6 Reynolds Transport Theorem 193

5.3 Balance of Linear and Angular Momentum 193
 5.3.1 Principle of Balance of Linear Momentum 193
 5.3.1.1 Equations of motion in the spatial description ... 197
 5.3.1.2 Equations of motion in the material description 199
 5.3.2 Spatial Equations of Motion in Cylindrical and
 Spherical Coordinates 201
 5.3.2.1 Cylindrical coordinates 202
 5.3.2.2 Spherical coordinates 202
 5.3.3 Principle of Balance of Angular Momentum 203
 5.3.3.1 Monopolar case 203
 5.3.3.2 Multipolar case 205
CONTENTS

5.4 Thermodynamic Principles .. 206
 5.4.1 Introduction ... 206
 5.4.2 Balance of Energy ... 207
 5.4.2.1 Energy equation in the spatial description 207
 5.4.2.2 Energy equation in the material description 209
 5.4.3 Entropy Inequality .. 210
 5.4.3.1 Homogeneous processes 210
 5.4.3.2 Inhomogeneous processes 210

5.5 Summary .. 212
 5.5.1 Preliminary Comments 212
 5.5.2 Conservation and Balance Equations in
 the Spatial Description 212
 5.5.3 Conservation and Balance Equations in
 the Material Description 213
 5.5.4 Closing Comments .. 213

Problems ... 214

6 CONSTITUTIVE EQUATIONS ... 221

6.1 Introduction .. 221
 6.1.1 General Comments ... 221
 6.1.2 General Principles of Constitutive Theory 222
 6.1.3 Material Frame Indifference 223
 6.1.4 Restrictions Placed by the Entropy Inequality 224

6.2 Elastic Materials .. 225
 6.2.1 Cauchy-Elastic Materials 225
 6.2.2 Green-Elastic or Hyperelastic Materials 226
 6.2.3 Linearized Hyperelastic Materials: Infinitesimal Strains 227

6.3 Hookean Solids .. 228
 6.3.1 Generalized Hooke’s Law 228
 6.3.2 Material Symmetry Planes 230
 6.3.3 Monoclinic Materials 232
 6.3.4 Orthotropic Materials 233
 6.3.5 Isotropic Materials ... 237

6.4 Nonlinear Elastic Constitutive Relations 241
CONTENTS

6.5 Newtonian Fluids ... 242
 6.5.1 Introduction ... 242
 6.5.2 Ideal Fluids ... 243
 6.5.3 Viscous Incompressible Fluids 244

6.6 Generalized Newtonian Fluids 245
 6.6.1 Introduction ... 245
 6.6.2 Inelastic Fluids 245
 6.6.2.1 Power-law model 246
 6.6.2.2 Carreau model 246
 6.6.2.3 Bingham model 247
 6.6.3 Viscoelastic Constitutive Models 247
 6.6.3.1 Differential models 247
 6.6.3.2 Integral models 250

6.7 Heat Transfer .. 251
 6.7.1 Introduction ... 251
 6.7.2 Fourier’s Heat Conduction Law 251
 6.7.3 Newton’s Law of Cooling 252
 6.7.4 Stefan–Boltzmann Law 252

6.8 Constitutive Relations for Coupled Problems 252
 6.8.1 Electromagnetics 252
 6.8.1.1 Maxwell’s equations 253
 6.8.1.2 Constitutive relations 253
 6.8.2 Thermoelasticity 255
 6.8.3 Hygrothermal elasticity 255
 6.8.4 Electroelasticity 256

6.9 Summary .. 258

Problems .. 259

7 LINEARIZED ELASTICITY 265

7.1 Introduction ... 265

7.2 Governing Equations 265
 7.2.1 Preliminary Comments 266
 7.2.2 Summary of Equations 266
CONTENTS

7.2.2.1 Strain-displacement equations 266
7.2.2.2 Equations of motion 267
7.2.2.3 Constitutive equations 268
7.2.2.4 Boundary conditions 269
7.2.2.5 Compatibility conditions 269
7.2.3 The Navier Equations 269
7.2.4 The Beltrami–Michell Equations 270

7.3 Solution Methods . 271
7.3.1 Types of Problems . 271
7.3.2 Types of Solution Methods 272
7.3.3 Examples of the Semi-Inverse Method 273
7.3.4 Stretching and Bending of Beams 278
7.3.5 Superposition Principle 283
7.3.6 Uniqueness of Solutions 284

7.4 Clapeyron’s, Betti’s, and Maxwell’s Theorems 285
7.4.1 Clapeyron’s Theorem 285
7.4.2 Betti’s Reciprocity Theorem 288
7.4.3 Maxwell’s Reciprocity Theorem 291

7.5 Solution of Two-Dimensional Problems 293
7.5.1 Introduction . 293
7.5.2 Plane Strain Problems 294
7.5.3 Plane Stress Problems 297
7.5.4 Unification of Plane Stress and Plane Strain Problems . . 300
7.5.5 Airy Stress Function 301
7.5.6 Saint-Venant’s Principle 303
7.5.7 Torsion of Cylindrical Members 308
7.5.7.1 Warping function 309
7.5.7.2 Prandtl’s stress function 311

7.6 Methods Based on Total Potential Energy 314
7.6.1 Introduction . 314
7.6.2 The Variational Operator 314
7.6.3 The Principle of the Minimum Total Potential Energy . . . 316
7.6.3.1 Construction of the total potential energy functional . . 316
7.6.3.2 Euler’s equations and natural boundary conditions . . . 317
7.6.3.3 Minimum property of the total potential energy functional 319
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.4 Castigliano’s Theorem I</td>
<td>322</td>
</tr>
<tr>
<td>7.6.5 The Ritz Method</td>
<td>326</td>
</tr>
<tr>
<td>7.6.5.1 The variational problem</td>
<td>326</td>
</tr>
<tr>
<td>7.6.5.2 Description of the method</td>
<td>328</td>
</tr>
<tr>
<td>7.7 Hamilton’s Principle</td>
<td>334</td>
</tr>
<tr>
<td>7.7.1 Introduction</td>
<td>334</td>
</tr>
<tr>
<td>7.7.2 Hamilton’s Principle for a Rigid Body</td>
<td>334</td>
</tr>
<tr>
<td>7.7.3 Hamilton’s Principle for a Continuum</td>
<td>338</td>
</tr>
<tr>
<td>7.8 Summary</td>
<td>341</td>
</tr>
<tr>
<td>Problems</td>
<td>342</td>
</tr>
<tr>
<td>8 FLUID MECHANICS AND HEAT TRANSFER</td>
<td>355</td>
</tr>
<tr>
<td>8.1 Governing Equations</td>
<td>355</td>
</tr>
<tr>
<td>8.1.1 Preliminary Comments</td>
<td>355</td>
</tr>
<tr>
<td>8.1.2 Summary of Equations</td>
<td>356</td>
</tr>
<tr>
<td>8.2 Fluid Mechanics Problems</td>
<td>357</td>
</tr>
<tr>
<td>8.2.1 Governing Equations of Viscous Fluids</td>
<td>357</td>
</tr>
<tr>
<td>8.2.2 Inviscid Fluid Statics</td>
<td>360</td>
</tr>
<tr>
<td>8.2.3 Parallel Flow (Navier–Stokes Equations)</td>
<td>362</td>
</tr>
<tr>
<td>8.2.4 Problems with Negligible Convective Terms</td>
<td>367</td>
</tr>
<tr>
<td>8.2.5 Energy Equation for One-Dimensional Flows</td>
<td>370</td>
</tr>
<tr>
<td>8.3 Heat Transfer Problems</td>
<td>373</td>
</tr>
<tr>
<td>8.3.1 Governing Equations</td>
<td>373</td>
</tr>
<tr>
<td>8.3.2 Heat Conduction in a Cooling Fin</td>
<td>374</td>
</tr>
<tr>
<td>8.3.3 Axisymmetric Heat Conduction in a Circular Cylinder</td>
<td>376</td>
</tr>
<tr>
<td>8.3.4 Two-Dimensional Heat Transfer</td>
<td>379</td>
</tr>
<tr>
<td>8.3.5 Coupled Fluid Flow and Heat Transfer</td>
<td>381</td>
</tr>
<tr>
<td>8.4 Summary</td>
<td>382</td>
</tr>
<tr>
<td>Problems</td>
<td>382</td>
</tr>
<tr>
<td>9 LINEARIZED VISCOELASTICITY</td>
<td>389</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>389</td>
</tr>
<tr>
<td>9.1.1 Preliminary Comments</td>
<td>389</td>
</tr>
</tbody>
</table>
CONTENTS

9.1.2 Initial Value Problem, the Unit Impulse, and the Unit Step Function ... 390
9.1.3 The Laplace Transform Method .. 392

9.2 Spring and Dashpot Models .. 396
9.2.1 Creep Compliance and Relaxation Modulus 396
9.2.2 Maxwell Element ... 397
 9.2.2.1 Creep response ... 397
 9.2.2.2 Relaxation response .. 398
9.2.3 Kelvin–Voigt Element .. 400
 9.2.3.1 Creep response ... 400
 9.2.3.2 Relaxation response .. 401
9.2.4 Three-Element Models ... 402
9.2.5 Four-Element Models .. 404

9.3 Integral Constitutive Equations ... 407
9.3.1 Hereditary Integrals ... 407
9.3.2 Hereditary Integrals for Deviatoric Components 410
9.3.3 The Correspondence Principle ... 412
9.3.4 Elastic and Viscoelastic Analogies ... 414

9.4 Summary ... 420

Problems .. 420

References for Additional Reading .. 425
Answers to Selected Problems ... 429
Index ... 441
List of Symbols

The symbols that are used throughout the book for various important quantities are defined in the following list. In some cases, the same symbol has different meaning in different parts of the book; it should be clear from the context.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Acceleration vector, $\frac{Dv}{Dt}$</td>
</tr>
<tr>
<td>A</td>
<td>Matrix of normalized eigenvectors [see Eq. (3.9.8)]</td>
</tr>
<tr>
<td>B</td>
<td>Left Cauchy–Green deformation tensor (or Finger tensor), $B = F \cdot F^T$; magnetic flux density vector</td>
</tr>
<tr>
<td>\hat{B}</td>
<td>Cauchy strain tensor, $\hat{B} = F^{-T} \cdot F^{-1}$; $\hat{B}^{-1} = B$</td>
</tr>
<tr>
<td>$B(,)$</td>
<td>Bilinear form</td>
</tr>
<tr>
<td>c</td>
<td>Specific heat, moisture concentration</td>
</tr>
<tr>
<td>c_v, c_p</td>
<td>Specific heat at constant volume and pressure</td>
</tr>
<tr>
<td>C</td>
<td>Right Cauchy–Green deformation tensor, $C = F^T \cdot F$; fourth-order elasticity tensor [see Eq. (6.3.4)]</td>
</tr>
<tr>
<td>C_{ij}</td>
<td>Elastic stiffness coefficients</td>
</tr>
<tr>
<td>d</td>
<td>Third-order tensor of piezoelectric moduli</td>
</tr>
<tr>
<td>D</td>
<td>Internal dissipation</td>
</tr>
<tr>
<td>da</td>
<td>Area element (vector) in spatial description</td>
</tr>
<tr>
<td>dA</td>
<td>Area element (vector) in material description</td>
</tr>
<tr>
<td>ds</td>
<td>Surface element in current configuration</td>
</tr>
<tr>
<td>dS</td>
<td>Surface element in reference configuration</td>
</tr>
<tr>
<td>dx</td>
<td>Line element (vector) in current configuration</td>
</tr>
<tr>
<td>dX</td>
<td>Line element (vector) in reference configuration</td>
</tr>
<tr>
<td>D</td>
<td>Symmetric part of the velocity gradient tensor, $L = (\nabla v)^T$; that is, $D = \frac{1}{2} \left[(\nabla v)^T + \nabla v \right]$; electric flux vector; mass diffusivity tensor</td>
</tr>
<tr>
<td>D/Dt</td>
<td>Material time derivative</td>
</tr>
<tr>
<td>D_i</td>
<td>Internal diameter</td>
</tr>
<tr>
<td>e</td>
<td>Specific internal energy</td>
</tr>
<tr>
<td>e</td>
<td>Almansi strain tensor, $e = \frac{1}{2} \left(I - F^{-T} \cdot F^{-1} \right)$</td>
</tr>
<tr>
<td>\hat{e}</td>
<td>A unit vector</td>
</tr>
<tr>
<td>e_A</td>
<td>A unit basis vector in the direction of vector A</td>
</tr>
<tr>
<td>e_i</td>
<td>A basis vector in the x_i-direction</td>
</tr>
<tr>
<td>e_{ijk}</td>
<td>Components of alternating tensor, ε</td>
</tr>
<tr>
<td>E</td>
<td>Green–Lagrange strain tensor, $E = \frac{1}{2} \left(F^T \cdot F - I \right)$</td>
</tr>
<tr>
<td>E, E_1, E_2</td>
<td>Young’s modulus (modulus of elasticity)</td>
</tr>
<tr>
<td>\hat{E}_i</td>
<td>Unit base vector along the X_i material coordinate direction electric field intensity vector</td>
</tr>
<tr>
<td>E_{ij}</td>
<td>Components of the Green–Lagrange strain tensor</td>
</tr>
<tr>
<td>f</td>
<td>Load per unit length of a bar</td>
</tr>
<tr>
<td>f</td>
<td>Body force vector</td>
</tr>
<tr>
<td>$f(\cdot)$</td>
<td>Function</td>
</tr>
<tr>
<td>f_x, f_y, f_z</td>
<td>Body force components in the x, y, and z directions</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>F</td>
<td>Deformation gradient, $\mathbf{F} = (\nabla_0 \mathbf{x})^T$; force vector</td>
</tr>
<tr>
<td>\mathcal{F}</td>
<td>Functional mapping</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity; function; internal heat generation</td>
</tr>
<tr>
<td>\mathbf{g}</td>
<td>Gradient of temperature, $\mathbf{g} = \nabla \theta$</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus (modulus of rigidity)</td>
</tr>
<tr>
<td>h</td>
<td>Height of the beam; thickness; heat transfer coefficient</td>
</tr>
<tr>
<td>H</td>
<td>Total entropy (see Section 5.4.3.1); unit step function</td>
</tr>
<tr>
<td>\mathbf{H}</td>
<td>Nonlinear deformation tensor [see Eq. 6.6.25]; magnetic field intensity vector</td>
</tr>
<tr>
<td>I</td>
<td>Second moment of area of a beam cross section; functional</td>
</tr>
<tr>
<td>I_1, I_2, I_3</td>
<td>Principal invariants of stress tensor</td>
</tr>
<tr>
<td>J</td>
<td>Determinant of the matrix of deformation gradient (Jacobian); polar second moment of area of a shaft cross section</td>
</tr>
<tr>
<td>\mathbf{J}</td>
<td>Current density vector; creep compliance</td>
</tr>
<tr>
<td>J_i</td>
<td>Principal invariants of strain tensor \mathbf{E} or rate of deformation tensor \mathbf{D}</td>
</tr>
<tr>
<td>k</td>
<td>Spring constant; thermal conductivity</td>
</tr>
<tr>
<td>K</td>
<td>Thermal conductivity tensor</td>
</tr>
<tr>
<td>K_{ij}</td>
<td>Stiffness coefficients</td>
</tr>
<tr>
<td>K_s</td>
<td>Shear correction factor in Timoshenko beam theory</td>
</tr>
<tr>
<td>ℓ_{ij}</td>
<td>Direction cosines [see Eq. (2.2.71) or Eq. (4.3.4)]</td>
</tr>
<tr>
<td>L</td>
<td>Length; Lagrangian function</td>
</tr>
<tr>
<td>$L(\cdot)$</td>
<td>Velocity gradient tensor, $\mathbf{L} = (\nabla \mathbf{v})^T$</td>
</tr>
<tr>
<td>$[L]$</td>
<td>Linear form</td>
</tr>
<tr>
<td>m</td>
<td>A scalar memory function (or relaxation kernel)</td>
</tr>
<tr>
<td>\mathbf{m}</td>
<td>Couple traction vector [see Eq. (5.3.33)]</td>
</tr>
<tr>
<td>M</td>
<td>Bending moment in beam problems</td>
</tr>
<tr>
<td>\mathbf{M}</td>
<td>Couple stress tensor; magnetization vector</td>
</tr>
<tr>
<td>\mathbf{n}</td>
<td>Unit normal vector in the current configuration</td>
</tr>
<tr>
<td>n_i</td>
<td>ith component of the unit normal vector \mathbf{n}</td>
</tr>
<tr>
<td>N</td>
<td>Axial force in beam problems</td>
</tr>
<tr>
<td>\mathbf{N}</td>
<td>Unit normal vector in the reference configuration</td>
</tr>
<tr>
<td>N_i</td>
<td>ith component of the unit normal vector \mathbf{N}</td>
</tr>
<tr>
<td>p</td>
<td>Pressure (hydrostatic or thermodynamic)</td>
</tr>
<tr>
<td>\mathbf{p}</td>
<td>Angular momentum vector; vector of pyroelectric coefficients</td>
</tr>
<tr>
<td>P</td>
<td>Point load in beams; perimeter</td>
</tr>
<tr>
<td>\mathbf{P}</td>
<td>First Piola–Kirchhoff stress tensor; polarization vector</td>
</tr>
<tr>
<td>q</td>
<td>Distributed transverse load on a beam</td>
</tr>
<tr>
<td>q_0</td>
<td>Intensity of the distributed transverse load in beams</td>
</tr>
<tr>
<td>\mathbf{q}_0</td>
<td>Heat flux vector in the reference configuration</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

q_n Heat flux normal to the boundary, \(q_n = \nabla \cdot \hat{n} \)
q_f Moisture flux vector
q_i Force components
q Heat flux vector in the current configuration
Q First moment of area; volume rate of flow
Q Rotation tensor [see Eq. (3.8.12)]
Q_h Heat input
Q_J Joule heating
r Radial coordinate in the cylindrical polar system
r_0 Internal heat generation per unit mass in the reference configuration
r_h Internal heat generation per unit mass in the current configuration
R Radial coordinate in the spherical coordinate system; universal gas constant
R Position vector in the spherical coordinate system; proper orthogonal tensor
S A second-order tensor; second Piola–Kirchhoff stress tensor
S_e Electric susceptibility tensor
S_{ij} Elastic compliance coefficients
t Time
t Stress vector; traction vector
T Torque; temperature
u Displacement vector
v Velocity, \(v = |v| \)
V Shear force in beam problems; potential energy due to loads
V Left Cauchy stretch tensor
W Power input
W Skew symmetric part of the velocity gradient tensor, \(L = (\nabla v)^T \); that is, \(W = \frac{1}{2} \left[(\nabla v)^T - \nabla v \right] \)
x Spatial coordinates
y, z Rectangular Cartesian coordinates
x_1, x_2, x_3 Rectangular Cartesian coordinates
X Material coordinates
Y Relaxation modulus
z Transverse coordinate in the beam problem; axial coordinate in the torsion problem
LIST OF SYMBOLS

Greek symbols

\(\alpha \) Angle; coefficient of thermal expansion
\(\alpha_{ij} \) Thermal coefficients of expansion
\(\beta_{ij} \) Material coefficients, \(\beta_{ij} = C_{ijkl} \alpha_{kl} \)
\(\chi \) Deformation mapping
\(\delta \) Variational operator used in Chapter 7; Dirac delta
\(\delta_{ij} \) Components of the unit tensor, \(I \) (Kronecker delta)
\(\Delta \) Change of (followed by another symbol)
\(\varepsilon \) Infinitesimal strain tensor
\(\tilde{\varepsilon} \) Symmetric part of the displacement gradient tensor, \((\nabla \mathbf{u})^T \); that is, \(\tilde{\varepsilon} = \frac{1}{2} \left[(\nabla \mathbf{u})^T + \nabla \mathbf{u} \right] \)
\(\epsilon_0 \) Permittivity of free space
\(\epsilon_{ij} \) Rectangular components of the infinitesimal strain tensor
\(\phi \) A typical variable; angular coordinate in the spherical coordinate system; electric potential; relaxation function
\(\phi_f \) Moisture source
\(\Phi \) Viscous dissipation, \(\Phi = \tau : \mathbf{D} \); Gibb’s potential; Airy stress function
\(\gamma \) Shear strain in one-dimensional problems
\(\Gamma \) Internal entropy production; total boundary
\(\eta \) Entropy density per unit mass; dashpot constant
\(\eta_0 \) Viscosity coefficient
\(\kappa_0, \kappa \) Reference and current configurations
\(\lambda \) Extension ratio; Lamé constant; eigenvalue
\(\mu \) Lamé constant; viscosity; principal value of strain
\(\mu_0 \) Permeability of free space
\(\nu \) Poisson’s ratio; \(\nu_{ij} \) Poisson’s ratios
\(\Pi \) Total potential energy functional
\(\theta \) Angular coordinate in the cylindrical and spherical coordinate systems; angle; twist per unit length; absolute temperature
\(\Theta \) Twist
\(\rho \) Density in the current configuration; charge density
\(\rho_0 \) Density in the reference configuration
\(\sigma \) Boltzmann constant
\(\sigma \) Mean stress
\(\sigma \) Cauchy stress tensor
\(\tau \) Shear stress; retardation or relaxation time
\(\tau \) Viscous stress tensor
\(\Omega \) Domain of a problem
\(\Omega \) Skew symmetric part of the displacement gradient tensor, \((\nabla \mathbf{u})^T \); that is, \(\Omega = \frac{1}{2} \left[(\nabla \mathbf{u})^T - \nabla \mathbf{u} \right] \)
LIST OF SYMBOLS

\(\omega \) Angular velocity
\(\omega \) Infinitesimal rotation vector, \(\omega = \frac{1}{2} \nabla \times \mathbf{u} \)
\(\psi \) Warping function; stream function; creep function
\(\Psi \) Helmholtz free energy density; Prandtl stress function
\(\nabla \) Gradient operator with respect to \(x \)
\(\nabla_0 \) Gradient operator with respect to \(X \)
[] Matrix associated with the enclosed quantity
{ } Column vector associated with the enclosed quantity
| | Magnitude or determinant of the enclosed quantity
() Time derivative of the enclosed quantity
()* Enclosed quantity with superposed rigid-body motion
() Deviatoric tensors associated with the enclosed tensor

Note:
Quotes by various people included in this book were found at different web sites; for example, visit:

http://naturalscience.com/dsqhome.html,
http://thinkexist.com/quotes/david_hilbert/,
and
The author cannot vouch for their accuracy; this author is motivated to include the quotes at various places in his book for their wit and wisdom.
Preface to the Second Edition

Tis the good reader that makes the good book; in every book he finds passages which seem confidences or asides hidden from all else and unmistakably meant for his ear; the profit of books is according to the sensibility of the reader; the profoundest thought or passion sleeps as in a mine, until it is discovered by an equal mind and heart.

— Ralph Waldo Emerson (1803–1882)

You cannot teach a man anything, you can only help him find it within himself.

— Galileo Galilei (1564–1642)

Engineers are problem solvers. They construct mathematical models, develop analytical and numerical approaches and methodologies, and design and manufacture various types of devices, systems, or processes. Mathematical development and engineering analysis are aids to designing systems for specific functionalities, and they involve (1) mathematical model development, (2) data acquisition by measurements, (3) numerical simulation, and (4) evaluation of the results in light of known information. Mathematical models are developed using laws of physics and assumptions concerning the behavior of the system under consideration. The most difficult step in arriving at a design that is both functional and cost-effective is the construction of a suitable mathematical model of the system’s behavior. It is in this context that a course on continuum mechanics or elasticity provides engineers with the background to formulate a suitable mathematical model and evaluate it in the context of the functionality and design constraints placed on the system.

Most classical books on continuum mechanics are very rigorous in mathematical treatments of the subject but short on detailed explanations and including few examples and problem sets. Such books serve as reference books but not as textbooks. This textbook provides illustrative examples and problem sets that enable readers to test their understanding of the subject matter and utilize the tools developed in the formulation of engineering problems.

This second edition of Introduction to Continuum Mechanics has the same objective as the first, namely, to facilitate an easy and thorough understanding of continuum mechanics and elasticity concepts. The course also helps engineers who depend on canned programs to analyze problems to interpret the results produced by such programs. The book offers a concise yet rigorous treatment of the subject of continuum mechanics and elasticity at the introductory level. In all of the chapters of the second edition, additional explanations, examples, and problems have been added. No attempt has been made to enlarge the scope or increase the number of topics covered.

The book may be used as a textbook for a first course on continuum mechanics as well as elasticity (omitting Chapter 8 on fluid mechanics and heat transfer). A solutions manual has also been prepared for the book. The solution manual is available from the publisher only to instructors who adopt the book as a textbook for a course.
Since the publication of the first edition, several users of the book communicated their comments and compliments as well as errors they found, for which the author thanks them. All of the errors known to the author have been corrected in the current edition. The author is grateful, in particular, to Drs. Karan Surana (University of Kansas), Arun Srinivasa (Texas A&M University), Rebecca Brannon (University of Utah), Vinu Unnikrishnan (University of Alabama), Wenbin Yu (Utah State University), Srikanth Vedantam (Indian Institute of Technology, Madras), Shailendra Joshi (National University of Singapore), Ganesh Subbarayan (Purdue University), S. H. Khan (Indian Institute of Technology, Kanpur), and Jaehyung Ju (University of North Texas) for their constructive comments and help. The author also expresses his sincere thanks to Mr. Peter Gordon, Senior Editor (Engineering) at Cambridge University Press, for his continued encouragement, friendship, and support in producing this book. The author requests readers to send their comments and corrections to jn_reddy@yahoo.com.

J. N. Reddy
College Station, Texas

What is there that confers the noblest delight? What is that which swells a man’s breast with pride above that which any other experience can bring to him? Discovery! To know that you are walking where none others have walked ...

— Mark Twain (1835–1910)

You can get into a habit of thought in which you enjoy making fun of all those other people who don’t see things as clearly as you do. We have to guard carefully against it.

— Carl Sagan (1934–1996)
Preface to the First Edition

If I have been able to see further, it was only because I stood on the shoulders of giants.

—– Isaac Newton (1643–1727)

Many of the mathematical models of natural phenomena are based on fundamental scientific laws of physics or otherwise, extracted from centuries of research on the behavior of physical systems under the action of natural “forces.” Today this subject is referred to simply as mechanics – a phrase that encompasses broad fields of science concerned with the behavior of fluids, solids, and complex materials. Mechanics is vitally important to virtually every area of technology and remains an intellectually rich subject taught in all major universities. It is also the focus of research in departments of aerospace, chemical, civil, and mechanical engineering, and engineering science and mechanics, as well as applied mathematics and physics. The last several decades have witnessed a great deal of research in continuum mechanics and its application to a variety of problems. As most modern technologies are no longer discipline-specific but involve multidisciplinary approaches, scientists and engineers should be trained to think and work in such environments. Therefore, it is necessary to introduce the subject of mechanics to senior undergraduate and beginning graduate students so that they have a strong background in the basic principles common to all major engineering fields. A first course on continuum mechanics or elasticity is the one that provides the basic principles of mechanics and prepares engineers and scientists for advanced courses in traditional as well as emerging fields such as biomechanics and nanomechanics.

There are many books on mechanics of continua. These books fall into two major categories: those that present the subject as a highly mathematical and abstract subject, and those that are too elementary to be of use for those who will pursue further work in fluid dynamics, elasticity, plates and shells, viscoelasticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics, mechanobiology, and nanoscience. As is the case with all other books written (solely) by the author, the objective is to facilitate an easy understanding of the topics covered. It is hoped that the book is simple in presenting the main concepts yet mathematically rigorous enough in providing the invariant form as well as component form of the governing equations for analysis of practical problems of engineering. In particular, the book contains formulations and applications to specific problems from heat transfer, fluid mechanics, and solid mechanics.

The motivation and encouragement that led to the writing of this book came from the experience of teaching a course on continuum mechanics at Virginia Polytechnic Institute and State University and Texas A&M University. A course on continuum mechanics takes different forms – from abstract to very applied – when taught by different people. The primary objective of the course taught by the author is two-fold: (1) formulation of equations that describe the motion and thermomechanical response of materials and (2) solution of these equations for specific problems from elasticity, fluid flows, and heat transfer. The present
book is a formal presentation of the author’s notes developed for such a course over the last two and half decades.

With a brief discussion of the concept of a continuum in Chapter 1, a review of vectors and tensors is presented in Chapter 2. Since the language of mechanics is mathematics, it is necessary for all readers to familiarize themselves with the notation and operations of vectors and tensors. The subject of kinematics is discussed in Chapter 3. Various measures of strain are introduced here. The deformation gradient, Cauchy–Green deformation, Green–Lagrange strain, Cauchy and Euler strain, rate of deformation, and vorticity tensors are introduced, and the polar decomposition theorem is discussed in this chapter. In Chapter 4, various measures of stress – Cauchy stress and Piola–Kirchhoff stress measures – are introduced, and stress equilibrium equations are presented.

Chapter 5 is dedicated to the derivation of the field equations of continuum mechanics, which forms the heart of the book. The field equations are derived using the principles of conservation of mass and balance of momenta and energy. Constitutive relations that connect the kinematic variables (e.g., density, temperature, and deformation) to the kinetic variables (e.g., internal energy, heat flux, and stresses) are discussed in Chapter 6 for elastic materials, viscous and viscoelastic fluids, and heat transfer.

Chapters 7 and 8 are devoted to the application of the field equations derived in Chapter 5 and constitutive models of Chapter 6 to problems of linearized elasticity, and fluid mechanics and heat transfer, respectively. Simple boundary-value problems, mostly linear, are formulated and their solutions are discussed. The material presented in these chapters illustrates how physical problems are analytically formulated with the aid of continuum equations. Chapter 9 deals with linear viscoelastic constitutive models and their application to simple problems of solid mechanics. Since a continuum mechanics course is mostly offered by solid mechanics programs, the coverage in this book is slightly more directed, in terms of the amount and type of material covered, to solid and structural mechanics.

The book was written keeping undergraduate seniors and first-year graduate students of engineering in mind. Therefore, it is most suitable as a text book for adoption for a first course on continuum mechanics or elasticity. The book also serves as an excellent precursor to courses on viscoelasticity, plasticity, nonlinear elasticity, and nonlinear continuum mechanics.

The book contains so many mathematical equations that it is hardly possible not to have typographical and other kinds of errors. I wish to thank in advance those readers who are willing to draw the author’s attention to typos and errors, using the e-mail address: jn_reddy@yahoo.com.

J. N. Reddy
College Station, Texas
About the Author

J. N. Reddy is a University Distinguished Professor, Regents Professor, and the holder of the Oscar S. Wyatt Endowed Chair in the Department of Mechanical Engineering at Texas A&M University, College Station. Prior to this current position, he was the Clifton C. Garvin Professor in the Department of Engineering Science and Mechanics at Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg.

Dr. Reddy is internationally known for his contributions to theoretical and applied mechanics and computational mechanics. He is the author of more than 480 journal papers and 18 books. Professor Reddy is the recipient of numerous awards including the Walter L. Huber Civil Engineering Research Prize of the American Society of Civil Engineers (ASCE), the Worcester Reed Richards Memorial Award of the American Society of Mechanical Engineers (ASME), the 1997 Archie Higdon Distinguished Educator Award from the American Society of Engineering Education (ASEE), the 1998 Nathan M. Newmark Medal from ASCE, the 2000 Excellence in the Field of Composites from the American Society of Composites (ASC), the 2003 Bush Excellence Award for Faculty in International Research from Texas A&M University, and the 2003 Computational Solid Mechanics Award from the U.S. Association of Computational Mechanics (USACM). Dr. Reddy received honorary degrees (Honoris Causa) from the Technical University of Lisbon, Portugal, in 2009 and Odlar Yurdu University, Baku, Azerbaijan in 2011.

Dr. Reddy is one of the selective researchers in engineering around the world who is recognized by ISI Highly Cited Researchers with more than 13,000 citations (without self-citations more than 12,000) with an h-index of more than 54 as per Web of Science, 2013; as per Google Scholar the number of citations is more than 29,000 and the h-index is 71. A more complete resume with links to journal papers can be found at

http://isihighlycited.com/ or http://www.tamu.edu/acml.