
1

1

INTRODUCTION

I can live with doubt and uncertainty and not knowing. I think it is much more interesting to
live not knowing than to have answers that might be wrong.

—– Richard Feynmann (1918–1988)

What we need is not the will to believe but the will to find out.

—– Bertrand Russell (1872-1970)

1.1 Continuum Mechanics

The subject of mechanics deals with the study of deformations and forces in mat-
ter, whether it is a solid, liquid, or gas. In such a study, we make the simplifying
assumption, for analytical purposes, that the matter is distributed continuously,
without gaps or empty spaces (i.e., we disregard the molecular structure of mat-
ter). Such a hypothetical continuous matter is termed a continuum. In essence,
in a continuum all quantities such as mass density, displacements, velocities,
stresses, and so on vary continuously so that their spatial derivatives exist and
are continuous.1 The continuum assumption allows us to shrink an arbitrary
volume of material to a point, in much the same way as we take the limit in
defining a derivative, so that we can define quantities of interest at a point. For
example, mass density (mass per unit volume) of a material at a point is defined
as the ratio of the mass ∆m of the material to its volume ∆V surrounding the
point in the limit that ∆V becomes a value ε3, where ε is small compared with
the mean distance between molecules

ρ = lim
∆V→ε3

∆m

∆V
. (1.1.1)

In fact, we take the limit ε→ 0. A mathematical study of the mechanics of such
an idealized continuum is called continuum mechanics.

The primary objectives of this book are (1) to study the conservation prin-
ciples in mechanics of continua and formulate the equations that describe the
motion and mechanical behavior of materials, and (2) to present the applications
of these equations to simple problems associated with flows of fluids, conduction
of heat, and deformations of solid bodies. Although the first of these objec-
tives is important, the reason for the formulation of the equations is to gain a
quantitative understanding of the behavior of an engineering system. This quan-
titative understanding is useful in design and manufacture of better products.
Typical examples of engineering problems, which are sufficiently simple to be

1The continuity is violated when we consider shock waves in gas dynamics (discontinuity in
density and velocity) as well as dissimilar-material interfaces. In such cases, in addition
to the concepts to be discussed here, certain jump conditions are employed to deal with
discontinuities. We do not consider such situations in this book.
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2 INTRODUCTION

covered in this book, are described in the examples discussed next. At this stage
of discussion, it is sufficient to rely on the reader’s intuitive understanding of
concepts from basic courses in fluid mechanics, heat transfer, and mechanics of
materials about the meaning of stress and strain and what constitutes viscosity,
conductivity, modulus, and so on used in the examples.

Problem 1 (solid mechanics)

We wish to design a diving board (which enables a swimmer to gain momentum
before jumping into the pool) of given length L, assumed to be fixed at one end
and free at the other end (see Fig. 1.1.1). The board is initially straight and
horizontal and of uniform cross section. The design process consists of selecting
the material (with Young’s modulus E) and cross-sectional dimensions b and
h such that the board carries the (moving) weight W of the swimmer. The
design criteria are that the stresses developed do not exceed the allowable stress
values and the deflection of the free end does not exceed a pre-specified value δ.
A preliminary design of such systems is often based on mechanics of materials
equations. The final design involves the use of more sophisticated equations, such
as the three-dimensional (3D) elasticity equations. The equations of elementary
beam theory may be used to find a relation between the deflection δ of the
free end in terms of the length L, cross-sectional dimensions b and h, Young’s
modulus E, and weight W :

δ =
4WL3

Ebh3
. (1.1.2)

Given δ (allowable deflection) and load W (maximum possible weight of a swim-
mer), one can select the material (Young’s modulus, E) and dimensions L, b, and
h (which must be restricted to the standard sizes fabricated by a manufacturer).
In addition to the deflection criterion, one must also check if the board develops
stresses that exceed the allowable stresses of the material selected. Analysis of
pertinent equations provides the designer with alternatives to select the mate-
rial and dimensions of the board so as to have a cost-effective but functionally
reliable structure.

h

b

L

Figure 1.1.1

Fig. 1.1.1: A diving board fixed at the left end and free at the right end.
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1.1. CONTINUUM MECHANICS 3

Problem 2 (fluid mechanics)

We wish to measure the viscosity µ of a lubricating oil used in rotating machinery
to prevent the damage of the parts in contact. Viscosity, like Young’s modulus
of solid materials, is a material property that is useful in the calculation of shear
stresses developed between a fluid and a solid body. A capillary tube is used to
determine the viscosity of a fluid via the formula

µ =
πd4

128Q

p1 − p2

L
, (1.1.3)

where d is the internal diameter and L is the length of the capillary tube, p1 and
p2 are the pressures at the two ends of the tube (oil flows from one end to the
other, as shown in Fig. 1.1.2), and Q is the volume rate of flow at which the oil
is discharged from the tube. Equation (1.1.3) is derived, as we shall see later in
this book, using the principles of continuum mechanics.

Internal diameter, d

1p 2p

L
x

r

)(rvx

Figure 1.1.2

Fig. 1.1.2: Measurement of the viscosity of a fluid using a capillary tube.

Problem 3 (heat transfer)

We wish to determine the heat loss through the wall of a furnace. The wall
typically consists of layers of brick, cement mortar, and cinder block (see Fig.
1.1.3). Each of these materials provides a varying degree of thermal resistance.
The Fourier heat conduction law,

q = −kdT
dx
, (1.1.4)

Furnace

Cross section
of the wall

x

Figure 1.1.3

Fig. 1.1.3: Heat transfer through the composite wall of a furnace.
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4 INTRODUCTION

provides a relation between the heat flux q (heat flow per unit area) and gradient
of temperature T . Here k denotes thermal conductivity (1/k is the thermal
resistance) of the material. The negative sign in Eq. (1.1.4) indicates that
heat flows from a high-temperature region to a low-temperature region. Using
the continuum mechanics equations, one can determine the heat loss when the
temperatures inside and outside of the building are known. A building designer
can select the materials as well as thicknesses of various components of the
wall to reduce the heat loss (while ensuring necessary structural strength – a
structural analysis aspect).

The foregoing examples provide some indication of the need for studying the
mechanical response of materials under the influence of external loads. The re-
sponse of a material is consistent with the laws of physics and the constitutive
behavior of the material. The present book aims to describe the physical princi-
ples and derive the equations governing the stress and deformation of continuous
materials, and then solve some simple problems from various branches of engi-
neering to illustrate the applications of the principles discussed and equations
derived.

1.2 A Look Forward

The primary objective of this book is two fold: (1) use of the physical principles
to derive the equations that govern the motion and thermomechanical response
of materials, and (2) application of these equations for the solution of specific
problems of linearized elasticity, heat transfer, and fluid mechanics. The govern-
ing equations for the study of deformation and stress of a continuous material
are nothing but an analytical representation of the global laws of conservation of
mass and balance of momenta and energy and the constitutive response of the
continuum. They are applicable to all materials that are treated as a continuum.
Tailoring these equations to particular problems and solving them constitutes
the bulk of engineering analysis and design.

The study of motion and deformation of a continuum (or a “body” consisting
of continuously distributed material) can be broadly classified into four basic
categories:

(1) Kinematics (strain-displacement equations)

(2) Kinetics (balance of linear and angular momentum)

(3) Thermodynamics (first and second laws of thermodynamics)

(4) Constitutive equations (stress–strain relations)

Kinematics is the study of geometric changes or deformations in a continuum,
without consideration of forces causing the deformation. Kinetics is the study
of the equilibrium of forces and moments acting on a continuum, using the prin-
ciples of balance of linear and angular momentum. This study leads to equa-
tions of motion as well as the symmetry of stress tensor in the absence of body
couples. Thermodynamic principles are concerned with the balance of energy
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1.3. SUMMARY 5

and relations among heat, mechanical work, and thermodynamic properties of
a continuum. Constitutive equations describe thermomechanical behavior of the
material of the continuum, and they relate the dependent variables introduced in
the kinetic description to those introduced in the kinematic and thermodynamic
descriptions. Table 1.2.1 provides a brief summary of the relationship between
physical principles and governing equations and physical entities involved in the
equations.

Table 1.2.1: The major four topics of study, physical principles used, resulting governing
equations, and variables involved.

Topic of study Physical law Equations Variables

1. Kinematics None (based on Strain–displacement Displacements
geometric changes) relations and strains

Strain rate–velocity Velocities and
relations strain rates

2. Kinetics Conservation of Equations of Stresses
linear momentum motion and velocities

Conservation of Symmetry of Stresses
angular momentum stress tensor

3. Thermodynamics First law Energy equation Temperature,
heat flux,
stresses,
and velocities

Second law Clasius–Duhem Temperature,
inequality heat flux,

and entropy

4. Constitutive Constitutive Hooke’s law Stresses, strains,
equations* axioms heat flux, and

temperature

Newtonian fluids Stresses,
pressure,
and velocities

Fourier’s law heat flux and
temperature

Equations of state Density,
pressure, and
temperature

*Not all relations are listed.

1.3 Summary

In this chapter, the concept of a continuous medium is discussed and the major
objectives of the present study, namely, to use the physical principles to derive
the equations governing a continuous medium and to present application of
the equations in the solution of specific problems of linearized elasticity, heat
transfer, and fluid mechanics are presented. The study of physical principles is
broadly divided into four topics, as outlined in Table 1.2.1. These four topics are
the subjects of Chapters 3 through 6, respectively. Mathematical formulation

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02543-1 - An Introduction to Continuum Mechanics, Second Edition
J. N. Reddy
Excerpt
More information

http://www.cambridge.org/9781107025431
http://www.cambridge.org
http://www.cambridge.org


6 INTRODUCTION

of the governing equations of a continuous medium necessarily requires the use
of vectors and tensors, objects that facilitate invariant analytical formulation of
the natural laws. Therefore, it is useful to study certain operational properties
of vectors and tensors first. Chapter 2 is dedicated for this purpose.

Although the present book is self-contained for an introduction to continuum
mechanics or elasticity, other books are available that may provide an advanced
treatment of the subject. Many of the classical books on the subject do not
contain example and/or exercise problems to test readers’ understanding of the
concepts. Interested readers may consult the list of references at the end of this
book.

Problems

1.1 Newton’s second law can be expressed as

F = ma, (1)

where F is the net force acting on the body, m is the mass of the body, and a is the
acceleration of the body in the direction of the net force. Use Eq. (1) to determine the
governing equation of a free-falling body. Consider only the forces due to gravity and
the air resistance, which is assumed to be proportional to the square of the velocity of
the falling body.

1.2 Consider steady-state heat transfer through a cylindrical bar of nonuniform cross section.
The bar is subject to a known temperature T0 (◦C) at the left end and exposed, both on
the surface and at the right end, to a medium (such as cooling fluid or air) at temperature
T∞. Assume that temperature is uniform at any section of the bar, T = T (x), and
neglect thermal expansion of the bar (i.e., assume rigid). Use the principle of balance
of energy (which requires that the rate of change (increase) of internal energy is equal
to the sum of heat gained by conduction, convection, and internal heat generation) to
a typical element of the bar (see Fig. P1.2) to derive the governing equations of the
problem.

g(x), internal heat generation Convection from lateral 
surface

L

x
Exposed to ambient 
temperature, T∞

Maintained at 
temperature, T0

Δx

Δx

heat flow out,
(Aq)x+Δx

g(x)

heat flow in,
(Aq)x

Figure P1.2

Fig. P1.2

1.3 The Euler–Bernoulli hypothesis concerning the kinematics of bending deformation of
a beam assumes that straight lines perpendicular to the beam axis before deformation
remain (1) straight, (2) perpendicular to the tangent line to the beam axis, and (3)
inextensible during deformation. These assumptions lead to the following displacement
field:

u1(x, y) = −y dv
dx
, u2 = v(x), u3 = 0, (1)
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PROBLEMS 7

where (u1, u2, u3) are the displacements of a point (x, y, z) along the x, y, and z coor-
dinates, respectively, and v is the vertical displacement of the beam at point (x, 0, 0).
Suppose that the beam is subjected to a distributed transverse load q(x). Determine
the governing equation by summing the forces and moments on an element of the beam
(see Fig. P1.3). Note that the sign conventions for the moment and shear force are
based on the definitions

V =

∫
A

σxy dA, M =

∫
A

y σxx dA,

and may not agree with the sign conventions used in some mechanics of materials books.

x

q(x)

 L 

y, v

• •

y

z

Beam
cross  section

Figure P1.3
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q(x)
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V V dV+
dx
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•

dx
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xyσ
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A A

M y dA, V dA= ⋅ =ò òs s

Fig. P1.3

1.4 A cylindrical storage tank of diameter D contains a liquid column of height h(x, t).
Liquid is supplied to the tank at a rate of qi (m3/day) and drained at a rate of q0
(m3/day). Assume that the fluid is incompressible (i.e., constant mass density ρ) and
use the principle of conservation of mass to obtain a differential equation governing
h(x, t).

1.5 (Surface tension). Forces develop at the interface between two immiscible liquids, caus-
ing the interface to behave as if it were a membrane stretched over the fluid mass.
Molecules in the interior of the fluid mass are surrounded by molecules that are at-
tracted to each other, whereas molecules along the surface (i.e., inside the imaginary
membrane) are subjected to a net force toward the interior. This force imbalance creates
a tensile force in the membrane and is called surface tension (measured per unit length).
Let the difference between the pressure inside the drop and the external pressure be p
and the surface tension, ts. Determine the relation between p and ts for a spherical drop
of radius R.
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9

2

VECTORS AND TENSORS

A mathematical theory is not to be considered complete until you have made it so clear that
you can explain it to the first man whom you meet on the street.

—– David Hilbert (1862–1943)

2.1 Background and Overview

In the mathematical description of equations governing a continuous medium,
we derive relations between various quantities that characterize the stress and
deformation of the continuum by means of the laws of nature (such as Newton’s
laws, balance of energy, and so on). As a means of expressing a natural law,
a coordinate system in a chosen frame of reference is often introduced. The
mathematical form of the law thus depends on the chosen coordinate system
and may appear different in another type of coordinate system. The laws of
nature, however, should be independent of the choice of the coordinate system,
and we may seek to represent the law in a manner independent of the partic-
ular coordinate system. A way of doing this is provided by vector and tensor
analysis. When vector notation is used, a particular coordinate system need not
be introduced. Consequently, the use of vector notation in formulating natural
laws leaves them invariant to coordinate transformations. A study of physical
phenomena by means of vector equations often leads to a deeper understanding
of the problem in addition to bringing simplicity and versatility into the analysis.

In basic engineering courses, the term vector is used often to imply a physical
vector that has “magnitude and direction and satisfies the parallelogram law of
addition.” In mathematics, vectors are more abstract objects than physical
vectors. Like physical vectors, tensors are more general objects that possess
a magnitude and multiple direction(s) and satisfy rules of tensor addition and
scalar multiplication. In fact, physical vectors are often termed the first-order
tensors. As will be shown shortly, the specification of a stress component (i.e.,
force per unit area) requires a magnitude and two directions – one normal to the
plane on which the stress component is measured and the other is its direction
– to specify it uniquely.

This chapter is dedicated to the study of the elements of algebra and calculus
of vectors and tensors. Useful elements of the matrix theory and eigenvalue prob-
lems associated with second-order tensors are discussed. Index and summation
notations, which are extensively used throughout the book, are also introduced.
Those who are familiar with the material covered in any of the sections may
skip them and go to the next section or to Chapter 3.
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10 VECTORS AND TENSORS

2.2 Vector Algebra

In this section, we present a review of the formal definition of a geometric (or
physical) vector, discuss various products of vectors and physically interpret
them, introduce index notation to simplify representations of vectors in terms
of their components as well as vector operations, and develop transformation
equations among the components of a vector expressed in two different coordi-
nate systems. Many of these concepts, with the exception of the index notation,
may be familiar to most students of engineering, physics, and mathematics and
may be skipped.

2.2.1 Definition of a Vector

The quantities encountered in analytical descriptions of physical phenomena
may be classified into two groups according to the information needed to specify
them completely: scalars and nonscalars. The scalars are given by a single
number. Nonscalars have not only a magnitude specified, but also additional
information, such as direction. Nonscalars that obey certain rules (such as the
parallelogram law of addition) are called vectors. Not all nonscalar quantities
are vectors (e.g., a finite rotation is not a vector).

A physical vector is often shown as a directed line segment with an arrow-
head at the end of the line. The length of the line represents the magnitude
of the vector and the arrow indicates the direction. Thus, a physical vector,
possessing magnitude, is known as a normed vector space. In written material,
it is customary to place an arrow over the letter denoting the physical vector,
such as ~A. In printed material the vector letter is commonly denoted by a
boldface letter, A, such as is used in this book. The magnitude of the vector
A, to be formally defined shortly, is denoted by |A| or A. The magnitude of a
vector is a scalar.

A vector of unit length is called a unit vector. The unit vector along A may
be defined as follows:

êA =
A

|A|
=

A

A
. (2.2.1)

We may now write a vector A as

A = A êA. (2.2.2)

Thus, any vector may be represented as a product of its magnitude and a unit
vector along the vector. A unit vector is used to designate direction; it does not
have any physical dimensions. However, |A| has the physical dimensions. A
“hat” (caret) above the boldface letter, ê, is used to signify that it is a vector
of unit magnitude. A vector of zero magnitude is called a zero vector or a null
vector, and denoted by boldface zero, 0. Note that a lightface zero, 0, is a scalar
and boldface zero, 0, is the zero vector. Also, a zero vector has no direction
associated with it.
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