

NONLINEAR SOLID MECHANICS

This book covers solid mechanics for nonlinear elastic and elastoplastic materials, describing the behavior of ductile materials subjected to extreme mechanical loading and their eventual failure. The book highlights constitutive features to describe the behavior of frictional materials such as geological media. On the basis of this theory, including large strain and inelastic behaviors, bifurcation and instability are developed with a special focus on the modeling of the emergence of local instabilities such as shear band formation and flutter of a continuum. The former is regarded as a precursor of fracture, whereas the latter is typical of granular materials. The treatment is complemented with qualitative experiments, illustrations from everyday life and simple examples taken from structural mechanics.

Davide Bigoni is a professor in the faculty of engineering at the University of Trento, where he has been head of the Department of Mechanical and Structural Engineering. He was honored as a Euromech Fellow of the European Mechanics Society. He is co-editor of the *Journal of Mechanics of Materials and Structures* (an international journal founded by C. R. Steele) and is associate editor of *Mechanics Research Communications*.

Nonlinear Solid Mechanics

BIFURCATION THEORY AND MATERIAL INSTABILITY

Davide Bigoni University of Trento

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org

Information on this title: www.cambridge.org/9781107025417

© Davide Bigoni 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data Bigoni, Davide, 1959-

Nonlinear solid mechanics: bifurcation theory and material instability / Davide Bigoni.

p. cm.

Includes bibliographical references and index.

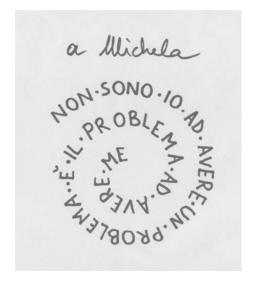
ISBN 978-1-107-02541-7

1. Nonlinear mechanics. 2. Materials–Mechanical properties. 3. Elastic analysis (Engineering) 4. Bifurcation theory. I. Title. TA405.B4983 2012

620.1'1292-dc23 2012013657

ISBN 978-1-107-02541-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.



Contents

Preface			ge xiii	
For	ewor	d by Giulio Maier	XV	
1	Introduction			
	1.1	Bifurcation and instability to explain pattern formation	2	
	1.2	Bifurcations in elasticity: The elastic cylinder	6	
	1.3	Bifurcations in elastoplasticity: The Shanley model	8	
	1.4	Shear bands and strain localization	12	
	1.5	Bifurcation, softening and size effect as the response of a structure	17	
	1.6	Chains with softening elements	22	
	1.7	Shear band saturation and multiple shear banding	31	
	1.8	Brittle and quasi-brittle materials	33	
	1.9	Coulomb friction and non-associative plasticity	37	
	1.10	Non-associative flow rule promotes material instabilities	41	
	1.11	A perturbative approach to material instability	42	
	1.12	A summary	48	
	1.13	Exercises, details and curiosities	52	
		1.13.1 Exercise: The Euler elastica and the double supported beam		
		subject to compressive load	52	
		1.13.2 Exercise: Bifurcation of a structure subject to tensile dead load	69	
		1.13.3 Exercise: Degrees of freedom and number of critical loads		
		of elastic structures	70	
		1.13.4 Exercise: A structure with a trivial configuration unstable		
		at a certain load, returning stable at higher load	73	
		1.13.5 Exercise: Flutter and divergence instability in an elastic		
		structure induced by Coulomb friction	80	
2	Eler	nents of tensor algebra and analysis	91	
	2.1	Components onto an orthonormal basis	92	
	2.2	Dyads	93	
	2.3	Second-order tensors	95	
	2.4	Rotation tensors	98	

vii

viii Contents

2.5	Positiv	ve definite second-order tensors, eigenvalues	
	and ei	genvectors	99
2.6	Reciprocal bases: Covariant and contravariant components		
2.7	Spectral representation theorem		
2.8	Square root of a tensor		
2.9	Polar decomposition theorem		
2.10	On coaxiality between second-order tensors		
2.11	Fourtl	n-order tensors	105
2.12	On the	e metric induced by semi-positive definite tensors	106
2.13	The M	Iacaulay bracket operator	107
2.14	Differential calculus for tensors		
2.15	Gradi	ent	108
2.16	Diverg	gence	110
2.17	Cylind	Irical coordinates	111
2.18	Diverg	gence theorem	113
2.19	Conve	exity and quasi-convexity	114
2.20	Exam	ples and details	116
	2.20.1	Example: Jordan normal form of a defective tensor with a	
		double eigenvalue	116
	2.20.2	Example: Jordan normal form of a defective tensor with a	
		triple eigenvalue	117
	2.20.3	Example: Inverse of the acoustic tensor of isotropic	
		elasticity	117
	2.20.4	Example: Inverse of the acoustic tensor for a particular	
		class of anisotropic elasticity	118
		Example: A representation for the square root of a tensor	118
	2.20.6	Proof of a property of the scalar product between two	
		symmetric tensors	119
	2.20.7	Example: Inverse and positive definiteness of the	420
	2 20 0	fourth-order tensor defining linear isotropic elasticity	120
	2.20.8	Example: Inverse and positive definiteness of a	
		fourth-order tensor defining a special anisotropic linear	101
	2 20 0	elasticity Example: Inverse of the elector legtic fourth order tangent	121
	2.20.9	Example: Inverse of the elastoplastic fourth-order tangent tensor	121
	2 20 10	Example: Spectral representation of the elastoplastic	121
	2.20.10	fourth-order tangent tensor	122
	2 20 1	Example: Strict convexity of the strain energy defining	122
	2,20,1	linear isotropic elasticity	124
		inical isotropic clasticity	127
Soli	d mecl	nanics at finite strains	125
3.1	Kinematics		
	3.1.1	Transformation of oriented line elements	125 127
	3.1.2	Transformation of oriented area elements	129
		Transformation of volume elements	129

3

Contents

Angular changes 130 3.1.4 3.1.5 Measures of strain 131 3.2 On material and spatial strain measures 135 Rigid-body rotation of the reference configuration 3.2.1 135 3.2.2 Rigid-body rotation of the current configuration 136 3.3 Motion of a deformable body 137 3.4 Mass conservation 141 3.5 Stress, dynamic forces 142 3.6 Power expended and work-conjugate stress/strain measures 146 3.7 Changes of fields for a superimposed rigid-body motion 150 4 Isotropic non-linear hyperelasticity 152 4.1 Isotropic compressible hyperelastic material 153 Kirchhoff-Saint Venant material 154 Incompressible isotropic elasticity 155 4.2.1 Mooney-Rivlin elasticity 156 4.2.2 Neo-Hookean elasticity 158 4.2.3 J_2 -Deformation theory of plasticity 158 The GBG model 4.2.4 159 5 Solutions of simple problems in finitely deformed non-linear elastic solids 162 5.1 Uniaxial plane strain tension and compression of an 162 incompressible elastic block 5.2 Uniaxial plane strain tension and compression of Kirchhoff-Saint Venant material 168 5.3 Uniaxial tension and compression of an incompressible elastic cylinder 170 5.4 Simple shear of an elastic block 173 5.5 Finite bending of an incompressible elastic block 179 6 Constitutive equations and anisotropic elasticity 188 Constitutive equations: General concepts 188 6.1.1 Change in observer and related principle of invariance of material response 189 6.1.2 Indifference with respect to rigid-body rotation of the reference configuration 192 6.1.3 Material symmetries 195 6.1.4 Cauchy elasticity 198 6.1.5 Green elastic or hyperelastic materials 201 6.1.6 Incompressible hyperelasticity and constrained materials 203 6.2 Rate and incremental elastic constitutive equations 207 6.2.1 Elastic laws in incremental and rate form 207 6.2.2 Relative Lagrangean description 210 6.2.3 Hypoelasticity 220

ix

x Contents

7 Yie	ld func	tions with emphasis on pressure sensitivity	223
7.1	The H	Taigh-Westergaard representation	225
7.2	The B	P yield function	229
	7.2.1	Smoothness of the BP yield surface	233
7.3	Reduc	ction of the BP yield criterion to known cases	234
	7.3.1	Drucker-Prager and von Mises yield criteria	236
	7.3.2	A comparison of the BP yield criterion with experimental	
		results	239
7.4	Conve	exity of yield function and yield surface	241
	7.4.1	A general convexity result for a class of yield functions	242
	7.4.2	Convexity of the BP yield function	246
	7.4.3	Generating convex yield functions	247
8 Ela	stoplas	tic constitutive equations	251
8.1	The th	neory of elastoplasticity at small strain	251
8.2	The es	ssential structure of rate elastoplastic constitutive equations	
	at larg	ge strain	257
	8.2.1	The small strain theory recovered	264
	8.2.2	A theory of elastoplasticity based on multiplicative	
		decomposition of the deformation gradient	265
	8.2.3	A simple constitutive model for granular materials	
		evidencing flutter instability	267
	8.2.4	Elastoplastic coupling in the modelling of granular	
		materials and geomaterials	268
8.3	A sum	nmary on rate constitutive equations	273
9 Mo	ving di	scontinuities and boundary value problems	275
9.1	Movin	ng discontinuities in solids	275
	9.1.1	Local jump conditions for propagating discontinuity	
		surfaces	276
	9.1.2	Balance equations for regions containing a moving	
		discontinuity surface	280
9.2	Bound	dary value problems in finite, rate and incremental forms	285
	9.2.1	Quasi-static first-order rate problems	287
	9.2.2	Incremental non-linear elasticity	289
10 Glo	bal cor	nditions of uniqueness and stability	293
10.1	Uniqu	neness of the rate problem	298
	10.1.1	Raniecki comparison solids	299
	10.1.2	Associative elastoplasticity	300
	10.1.3	'In-loading comparison solid'	302
10.2	Stabili	ity in the Hill sense	303
		Associative elastoplasticity	304
	10.2.2	Stability of a quasi-static deformation process	305
	10.2.3	An example: Elastoplastic column buckling	306

Contents xi

11	Loca	al conditions for uniqueness and stability	310		
	11.1	11.1 A local sufficient condition for uniqueness: Positive definiteness			
		of the constitutive operator	311		
		11.1.1 Uniaxial tension	315		
		11.1.2 The small strain theory	316		
	11.2	Singularity of the constitutive operator	317		
		11.2.1 Uniaxial tension	318		
		11.2.2 The small strain theory	319		
	11.3	Strong ellipticity	319		
		11.3.1 The small strain theory	323		
	11.4	Ellipticity, strain localisation and shear bands	323		
		11.4.1 The small strain theory	326		
	11.5	Flutter instability	331		
		11.5.1 Onset of flutter	331		
		11.5.2 Flutter instability for small strain elastoplasticity with			
		isotropic elasticity	332		
		11.5.3 Physical meaning and consequences of flutter	335		
		Other types of local criteria and instabilities	335		
	11.7	A summary on local and global uniqueness and stability criteria	336		
12	Incr	emental bifurcation of elastic solids	338		
	12.1	The bifurcation problem	339		
	12.2	Bifurcations of incompressible elastic solids deformed in			
		plane strain	340		
		12.2.1 Local uniqueness and stability criteria for			
		Biot plane strain and incompressible elasticity	340		
		12.2.2 Bifurcations of layered structures: General solution	351		
		12.2.3 Surface bifurcation	353		
		12.2.4 Interfacial bifurcations	355		
		12.2.5 Bifurcations of an elastic incompressible block	358		
		12.2.6 Incompressible elastic block on a 'spring foundation'	361		
		12.2.7 Multi-layered elastic structures	363		
	12.3	Bifurcations of an incompressible elastic cylinder	365		
		12.3.1 Numerical results for bifurcations of an elastic cylinder			
		subject to axial compression	370		
	12.4	Bifurcation under plane strain bending	375		
13	App	lications of local and global uniqueness and stability criteria to			
	non-	associative elastoplasticity	385		
	13.1	Local uniqueness and stability criteria for non-associative			
		elastoplasticity at small strain			
	13.2	Axi-symmetric bifurcations of an elastoplastic cylinder under			
		uniaxial stress			
		13.2.1 Results for the axi-symmetric bifurcations of a cylinder	391		
	13.3	Flutter instability for a finite-strain plasticity model with			
		anisotropic elasticity	396		

xii Contents

13.3.1 Examples of flutter instability for plane problems	396
13.3.2 Spectral analysis of the acoustic tensor	400
14 Wave propagation, stability and bifurcation	403
14.1 Incremental waves and bifurcation	405
14.2 Incremental plane waves	407
14.2.1 Non-linear elastic materials	407
14.3 Waves and material instabilities in elastoplasticity	409
14.3.1 Instability of uniform flow	413
14.3.2 A discussion on waves and instability in elastoplasticity	419
14.4 Acceleration waves	420
14.4.1 Non-linear elastic material deformed incrementally	420
14.4.2 Elastoplastic materials	420
15 Post-critical behaviour and multiple shear band formation	427
15.1 One-dimensional elastic models with non-convex energy	428
15.2 Two-dimensional elastoplastic modelling of post-shear banding	434
15.2.1 Post-shear banding analysis	436
15.2.2 Sharp shear banding versus saturation	439
15.2.3 Post-band saturation analysis	439
16 A perturbative approach to material instability	444
16.1 Infinite-body Green's function for a pre-stressed material	447
16.1.1 Quasi-static Green's function	447
16.1.2 The dynamic time-harmonic Green's function for general	
non-symmetric constitutive equations	457
16.1.3 Effects of flutter instability revealed by a pulsating	
perturbing dipole	464
16.2 Finite-length crack in a pre-stressed material	469
16.2.1 Finite-length crack parallel to an orthotropy axis	471
16.2.2 The inclined crack	480
16.2.3 Shear bands interacting with a finite-length crack	482
16.2.4 Incremental energy release rate for crack growth	486
16.3 Mode I perturbation of a stiffener in an infinite non-linear elastic	
material subjected to finite simple shear deformation	489
16.4 The stress state near a shear band and its propagation	498
References	507
Index	527

Color plates section is between pages 274 and 275

Preface

The purpose of this book is to present a research summary on solid mechanics at large strain, including the treatment of bifurcation and instability phenomena. The framework is crucial to the understanding of failure mechanisms in ductile materials, as connected to material instabilities, such as, shear banding.

I have employed Chapters 2 through 5 as a textbook for a graduate course on non-linear elasticity that I have offered at the University of Trento since 1999, whereas Chapters 8, 10, 11 and 13 have been the basis for a course held at CISM (no. 414, 'Material Instabilities in Elastic and Inelastic Solids', H. Petryk, ed.). Chapters 6, 7, 9, 12, 14 and 15 have been added to present the elasticity and the yield critera in detail, including a treatment on elastic bifurcation and instability, wave propagation and multiple shear banding. This material has been taught during seminars for graduate students at various universities. Chapter 16 is devoted to the perturbative approach to material instability, developed by me in a series of articles in cooperation with D. Capuani, M. Brun, F. Dal Corso, M. Gei, A. Piccolroaz and J. R. Willis. Finally, I have to admit that the Introduction of the book is overlong; in fact, I have used it for a 20-hour graduate course on stability and bifurcation. The hope is to attract attention to the main topics presented in the book.

During preparation of this book, I have enjoyed help from a number of friends, who have read and commented on parts of the manuscript: L. Argani, M. Bacca, K. Bertoldi, M. Brun, F. Dal Corso, A. Gajo, M. Gei, G. Mishuris, D. Misseroni, A. B. Movchan, N. V. Movchan, G. Noselli, H. Petryk, A. Piccolroaz, G. Puglisi, A. Reali, S. Roccabianca and D. Veber.

The photos presented in this book have been taken by me (using a Nikon FG–20 traditional camera or a Panasonic DMC–FZ5 digital camera) or by students at the University of Trento (using a Nikon D100 or a Nikon D200 digital camera). Most of the experiments presented have been performed at the University of Trento in the Laboratory for Physical Modeling of Structures and Photoelasticity.

Foreword

This book clearly exhibits some remarkable and unusual features. The central theme addresses one of the primary research challenges at present in solid and structural mechanics. In fact, research on nonlinearities owing to large deformations and inelastic behaviours of materials now has to be tackled for many systematic applications in mechanical and civil engineering because the evaluation of safety margins has become computationally possible, with obvious advantages when compared with "admissible stress" criteria, popular in past structural engineering practice.

The content of this book reflects the intensive and successful research work carried out by the author and his co-workers both at the University of Trento and at other institutions. The detailed introduction includes several clear illustrative descriptions of experiments and, hence, solid links with practical motivation and application for the book's content. It seems that in his writing, Davide Bigoni has been mindful of Cicero's admonition not always implemented in books on mechanics: 'Non enim paranda nobis solum, sed fruenda sapientia est' ('The knowledge should not only be acquired; it should be utilized as well'). Isaac Newton expanded on Cicero's advice when he wrote, 'Exempla docent non minus quam praecepta' ('Examples are not less instructive than theories'). In fact, the subsequent chapters include many examples to clarify notions of applied mathematics and theoretical continuum mechanics.

The mathematics and physics covered in this volume are not easily found in the existing engineering-oriented literature in the consistent manner presented herein. At present, attention should be paid more than in the past to the warning addressed to engineers ('ingeniarii') by Leonardo da Vinci, namely, 'Quelli che si innamoran di pratica senza scienzia son come 'l norchier ... senza timone e bussola' ('Those who like practice without science are like a steersman without rudder and without steering compass'). More explicitly, Leonardo underlined the important role of mathematics: 'Nessuna umana investigazione si può dimandare vera scienza se non passa per le matematiche dimostrazioni' ('No human research can be true science if it does not go though mathematical demonstrations'). Probably the author paid attention to this master's wisdom in compiling this volume.

xvi Foreword

As a conclusion, I express the opinion that this book provides a remarkable and timely contribution both to scientific education at the doctoral level and to the updating of scientific approaches and analytical tools in several areas of mechanical, civil and materials technologies.

Giulio Maier