FEYNMAN DIAGRAM TECHNIQUES IN
CONDENSED MATTER PHYSICS

A concise introduction to Feynman diagram techniques, this book shows how they can be applied to the analysis of complex many-particle systems, and offers a review of the essential elements of quantum mechanics, solid-state physics, and statistical mechanics.

Alongside a detailed account of the method of second quantization, the book covers topics such as Green’s and correlation functions, diagrammatic techniques, superconductivity, and contains several case studies. Some background knowledge in quantum mechanics, solid-state physics, and mathematical methods of physics is assumed.

Detailed derivations of formulas and in-depth examples and chapter exercises from various areas of condensed matter physics make this a valuable resource for both researchers and advanced undergraduate students in condensed-matter theory, many-body physics, and electrical engineering. Solutions to the exercises are made available online.

RAĐI A. JISHI is a Professor of Physics at California State University. His research interests center on condensed matter theory, carbon networks, superconductivity, and the electronic structure of crystals.
FEYNMAN DIAGRAM TECHNIQUES IN
CONDENSED MATTER PHYSICS

RADI A. JISHI
California State University
To the memory of
my parents
Contents

Preface
page xiii

1 A brief review of quantum mechanics
 1.1 The postulates
 1.2 The harmonic oscillator
 Further reading
 Problems
 1

2 Single-particle states
 2.1 Introduction
 2.2 Electron gas
 2.3 Bloch states
 2.4 Example: one-dimensional lattice
 2.5 Wannier states
 2.6 Two-dimensional electron gas in a magnetic field
 Further reading
 Problems
 18

3 Second quantization
 3.1 N-particle wave function
 3.2 Properly symmetrized products as a basis set
 3.3 Three examples
 3.4 Creation and annihilation operators
 3.5 One-body operators
 3.6 Examples
 3.7 Two-body operators
 3.8 Translationally invariant system
 3.9 Example: Coulomb interaction
 3.10 Electrons in a periodic potential
 37

3.11 Field operators 57
Further reading 61
Problems 61

4 The electron gas 65
4.1 The Hamiltonian in the jellium model 66
4.2 High density limit 69
4.3 Ground state energy 70
Further reading 76
Problems 76

5 A brief review of statistical mechanics 78
5.1 The fundamental postulate of statistical mechanics 78
5.2 Contact between statistics and thermodynamics 79
5.3 Ensembles 81
5.4 The statistical operator for a general ensemble 85
5.5 Quantum distribution functions 87
Further reading 89
Problems 89

6 Real-time Green’s and correlation functions 91
6.1 A plethora of functions 92
6.2 Physical meaning of Green’s functions 95
6.3 Spin-independent Hamiltonian, translational invariance 96
6.4 Spectral representation 98
6.5 Example: Green’s function of a noninteracting system 106
6.6 Linear response theory 109
6.7 Noninteracting electron gas in an external potential 114
6.8 Dielectric function of a noninteracting electron gas 117
6.9 Paramagnetic susceptibility of a noninteracting electron gas 117
6.10 Equation of motion 121
6.11 Example: noninteracting electron gas 122
6.12 Example: an atom adsorbed on graphene 123
Further reading 125
Problems 126

7 Applications of real-time Green’s functions 130
7.1 Single-level quantum dot 130
7.2 Quantum dot in contact with a metal: Anderson’s model 133
7.3 Tunneling in solids 135
Further reading 140
Problems 140
Contents

Chapter 8: Imaginary-time Green’s and correlation functions
- 8.1 Imaginary-time correlation function 144
- 8.2 Imaginary-time Green’s function 146
- 8.3 Significance of the imaginary-time Green’s function 148
- 8.4 Spectral representation, relation to real-time functions 151
- 8.5 Example: Green’s function for noninteracting particles 154
- 8.6 Example: Green’s function for 2-DEG in a magnetic field 155
- 8.7 Green’s function and the \hat{U}-operator 156
- 8.8 Wick’s theorem 162
- 8.9 Case study: first-order interaction 169
- 8.10 Cancellation of disconnected diagrams 174
- Further reading 176
- Problems 176

Chapter 9: Diagrammatic techniques
- 9.1 Case study: second-order perturbation in a system of fermions 179
- 9.2 Feynman rules in momentum-frequency space 186
- 9.3 An example of how to apply Feynman rules 192
- 9.4 Feynman rules in coordinate space 193
- 9.5 Self energy and Dyson’s equation 196
- 9.6 Energy shift and the lifetime of excitations 197
- 9.7 Time-ordered diagrams: a case study 199
- 9.8 Time-ordered diagrams: Dzyaloshinski’s rules 204
- Further reading 210
- Problems 210

Chapter 10: Electron gas: a diagrammatic approach
- 10.1 Model Hamiltonian 213
- 10.2 The need to go beyond first-order perturbation theory 214
- 10.3 Second-order perturbation theory: still inadequate 216
- 10.4 Classification of diagrams according to the degree of divergence 218
- 10.5 Self energy in the random phase approximation (RPA) 219
- 10.6 Summation of the ring diagrams 220
- 10.7 Screened Coulomb interaction 222
- 10.8 Collective electronic density fluctuations 223
- 10.9 How do electrons interact? 227
- 10.10 Dielectric function 229
- 10.11 Plasmons and Landau damping 234
- 10.12 Case study: dielectric function of graphene 239
Contents

Further reading
Problems

11 Phonons, photons, and electrons
11.1 Lattice vibrations in one dimension
11.2 One-dimensional diatomic lattice
11.3 Phonons in three-dimensional crystals
11.4 Phonon statistics
11.5 Electron–phonon interaction: rigid-ion approximation
11.6 Electron–LO phonon interaction in polar crystals
11.7 Phonon Green’s function
11.8 Free-phonon Green’s function
11.9 Feynman rules for the electron–phonon interaction
11.10 Electron self-energy
11.11 The electromagnetic field
11.12 Electron–photon interaction
11.13 Light scattering by crystals
11.14 Raman scattering in insulators
Further reading
Problems

12 Superconductivity
12.1 Properties of superconductors
12.2 The London equation
12.3 Effective electron–electron interaction
12.4 Cooper pairs
12.5 BCS theory of superconductivity
12.6 Mean field approach
12.7 Green’s function approach to superconductivity
12.8 Determination of the transition temperature
12.9 The Nambu formalism
12.10 Response to a weak magnetic field
12.11 Infinite conductivity
Further reading
Problems

13 Nonequilibrium Green’s function
13.1 Introduction
13.2 Schrödinger, Heisenberg, and interaction pictures
13.3 The malady and the remedy
13.4 Contour-ordered Green’s function

<table>
<thead>
<tr>
<th>Contents</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5 Kadanoff–Baym and Keldysh contours</td>
<td>343</td>
</tr>
<tr>
<td>13.6 Dyson’s equation</td>
<td>347</td>
</tr>
<tr>
<td>13.7 Langreth rules</td>
<td>349</td>
</tr>
<tr>
<td>13.8 Keldysh equations</td>
<td>351</td>
</tr>
<tr>
<td>13.9 Steady-state transport</td>
<td>352</td>
</tr>
<tr>
<td>13.10 Noninteracting quantum dot</td>
<td>360</td>
</tr>
<tr>
<td>13.11 Coulomb blockade in the Anderson model</td>
<td>363</td>
</tr>
<tr>
<td>Further reading</td>
<td>366</td>
</tr>
<tr>
<td>Problems</td>
<td>366</td>
</tr>
<tr>
<td>Appendix A: Second quantized form of operators</td>
<td>369</td>
</tr>
<tr>
<td>Appendix B: Completing the proof of Dzyaloshinski's rules</td>
<td>375</td>
</tr>
<tr>
<td>Appendix C: Lattice vibrations in three dimensions</td>
<td>378</td>
</tr>
<tr>
<td>Appendix D: Electron–phonon interaction in polar crystals</td>
<td>385</td>
</tr>
<tr>
<td>References</td>
<td>390</td>
</tr>
<tr>
<td>Index</td>
<td>394</td>
</tr>
</tbody>
</table>
Preface

In both theory and practice, condensed matter physics is concerned with the physical properties of materials that are comprised of complex many-particle systems. Modeling the systems’ behavior is essential to achieving a better understanding of the properties of these systems and their practical use in technology and industry.

Maximal knowledge about a many-particle system is gained by solving the Schrödinger equation. However, an exact solution of the Schrödinger equation is not possible, so resort is made to approximation schemes based on perturbation theory. It is generally true that, in order to properly describe the properties of an interacting many-particle system, perturbation theory must be carried out to infinite order. The best approach we have for doing so involves the use of Green’s function and Feynman diagrams. Furthermore, much of our knowledge about a given complex system is obtained by measuring its response to an external probe, such as an electromagnetic field, a beam of electrons, or some other form of perturbation; its response to this perturbation is best described in terms of Green’s function.

Two years ago, I set out to put together a guide that would allow advanced undergraduate and beginning graduate students in physics and electrical engineering to understand how Green’s functions and Feynman diagrams are used to more accurately model complicated interactions in condensed matter physics. As time went by and the book was taking form, it became clear that it had turned into a reference manual that would be useful to professionals and educators as well as students. It is a self-contained place to learn or review how Feynman diagrams are used to solve problems in condensed matter physics. Great care has been taken to show how to create them, use them, and solve problems with them, one step at a time. It has been a labor of love. My reward is the thought that it will help others to understand the subject.

The book begins with a brief review of quantum mechanics, followed by a short chapter on single-particle states. Taken together with the accompanying exercises,
these two chapters provide a decent review of quantum mechanics and solid state physics. The method of second quantization, being of crucial importance, is discussed at length in Chapter 3, and applied to the jellium model in Chapter 4. Since Green’s functions at finite temperature are defined in terms of thermal averages, a review of the basic elements of statistical mechanics is presented in Chapter 5, which, I hope, will be accessible to readers without extensive knowledge of the subject.

Real-time Green’s functions are discussed in Chapter 6, and some applications of these functions are presented in Chapter 7. Imaginary-time functions and Feynman diagram techniques are dealt with in Chapters 8 and 9. Every effort has been made to provide a step-by-step derivation of all the formulas, in as much detail as is necessary. Rules for the creation of the diagrams and their translation into algebraic expressions are clearly delineated. Feynman diagram techniques are then applied to the interacting electron gas in Chapter 10, to electron–phonon and electron–photon interactions in Chapter 11, and to superconductivity in Chapter 12. These techniques are then extended to systems that are not in equilibrium in Chapter 13.

Many exercises are given at the end of each chapter. For the more difficult problems, some guidance is given to allow the reader to arrive at the solution. Solutions to many of the exercises, as well as additional material, will be provided on my website (www.calstatela.edu/faculty/rjishi).

Over the course of the two years that it took me to finish this book, I received help in various ways from many people. In particular, I would like to thank David Guzman for extensive help in preparing this manuscript, and Hamad Alyahyaei for reading the first five chapters. I am indebted to Linda Alviti, who read the whole book and made valuable comments. I am grateful to Professor I. E. Dzyaloshinski for reading Chapter 9 and for his encouraging words. I also want to thank Dr. John Fowler, Dr. Simon Capelin, Antoaneta Ouzounova, Fiona Saunders, Kirsten Bot, and Claire Poole from Cambridge University Press for their help, guidance, and patience. I would also like to express my gratitude to my wife and children for their encouragement and support. Permission to use the quote from Russell’s *The Scientific Outlook* (2001) was provided by Taylor and Francis (Routledge). Copyright is owned by Taylor and Francis and The Bertrand Russell Foundation Ltd. Permission to use Gould’s quote from *Ever Since Darwin* (1977) was provided by W.W. Norton & Company.

This book is dedicated to the memory of my parents, who, despite adverse conditions, did all they could to provide me with a decent education.

Los Angeles, California

R. A. J.

July, 2012