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Preface

Machine learning is a research field involving the study of theories and technologies

to adapt a system model using a training dataset, so that the learned model will be

able to generalize and provide a correct classification or useful guidance even when the

inputs to the system are previously unknown. Machine learning builds its foundation

on linear algebra, statistical learning theory, pattern recognition, and artificial intelli-

gence. The development of practical machine learning tools requires multi-disciplinary

knowledge including matrix theory, signal processing, regression analysis, discrete

mathematics, and optimization theory. It covers a broad spectrum of application domains

in multimedia processing, network optimization, biomedical analysis, etc.

Since the publication of Vapnik’s book entitled The Nature of Statistical Learning

Theory (Springer-Verlag, 1995) and the introduction of the celebrated support vector

machine (SVM), research on kernel-based machine learning has flourished steadily for

nearly two decades. The enormous amount of research findings on unsupervised and

supervised learning models, both theory and applications, should already warrant a new

textbook, even without considering the fact that this fundamental field will undoubtedly

continue to grow for a good while.

The book first establishes algebraic and statistical foundations for kernel-based learn-

ing methods. It then systematically develops kernel-based learning models both for

unsupervised and for supervised scenarios.

• The secret of success of a machine learning system lies in finding an effective

representation for the objects of interest. In a basic representation, an object is repre-

sented as a feature vector in a finite-dimensional vector space. However, in numerous

machine learning applications, two different types of modified representations are

often employed: one involving dimension reduction and another involving dimension

expansion.

Dimension reduction. Dimension reduction is vital for visualization because of

humans’ inability to see objects geometrically in high-dimensional space. Like-

wise, dimension reduction may become imperative because of a machine’s inability

to process computationally demanding data represented by an extremely huge

dimensionality. Subspace projection is a main approach to dimension reduction.

This book will study principal component analysis (PCA) and discriminant compo-

nent analysis (DCA), two such projection methods for unsupervised and supervised

learning scenarios, respectively.
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Dimension expansion. In other application scenarios, the dimensionality of the

original feature space may be too small, which in turn limits the design free-

dom of any linear methods, rendering them ineffective for classifying datasets with

complex data distributions. In this case, dimension expansion offers a simple and

effective solution. One of the most systematic approaches to dimension expansion

is the kernel methods, which are based on polynomial or Gaussian kernels. The

higher the order of the kernel functions the more expanded the new feature space.

As shown later, the kernel methods, when applied to PCA or DCA, will lead to ker-

nel PCA and kernel DCA, respectively. Likewise, the same methods may be used to

derive various kernelized learning models both for unsupervised and for supervised

scenarios.

• Unsupervised learning models. The book presents conventional unsupervised

learning models for clustering analysis. They include K-means, expectation-

maximization (EM), self-organizing-map (SOM), and neighbor-joining (NJ) meth-

ods. All these unsupervised learning models can be formulated as ℓ2-based optimiz-

ers, thus they satisfy a critical learning subspace property (LSP). This in turn assures

the existence of their kernelized counterparts, i.e. kernelized learning models. The

latter models are formulated in terms of pairwise similarities between two objects,

as opposed to the representative feature vectors for individual objects. Hence kernel-

ized learning models are naturally applicable to non-vectorial data analysis, such as

network segmentation.

• Supervised learning models. The book also presents conventional supervised

learning models for classfication. They include least-squares error (LSE), Fisher dis-

criminant analysis (FDA), ridge regression (RR) and linear SVM. All these supervised

learning models can be formulated as ℓ2-based optimizers, thus they satisfy the LSP

condition, which in turn leads to their respective kernelized formulations, such as ker-

nel RR (KRR) and kernel SVM. The combination of KRR and SVM further yields a

hybrid classifier, named Ridge-SVM. The Ridge-SVM is endowed with a sufficient

set of design parameters to embrace existing classifiers as its special cases, including

KDA, KRR, and SVM. With properly adjusted parameters, again, all these kernel-

ized supervised learning models are naturally applicable to nonvectorial data analysis,

such as subcellular protein-sequence prediction.

In the book, the presentation of these topics and their extensions will be subdivided into

the following parts:

(i) Part I: Machine learning and kernel vector spaces

(ii) Part II: Dimension-reduction: PCA/KPCA and feature selection

(iii) Part III: Unsupervised learning models for cluster analysis

(iv) Part VI: Kernel ridge regressors and variants

(v) Part V: Support vector machines and variants

(vi) Part VI: Kernel methods for green machine learning technologies

(vii) Part VII: Kernel methods for statistical estimation theory

(viii) Part VIII: Appendices.
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The table of contents provides a more detailed description of the scope of the book.

From the perspective of new feature representation

The study of kernel-based machine learning involves a natural extension of the lin-

ear methods into their nonlinear counterparts. This book starts by devoting much of

the discussion to establishing formally the linear learning models so as to make sure

that students are given an opportunity to acquire a solid grasp of the underlying lin-

ear algebra and statistical principles of the learning models. The mathematical principle

of kernel methods, instead of linear methods, hinges upon replacing the conventional

pairwise similarity metric by a nonlinear kernel function. This ultimately leads to the

nonlinear (and more flexible) decision boundaries for pattern classification. In summary,

this basic mapping approach is conceptually simple. It involves (1) mapping the orig-

inal representative vectors to the (dimension-expanded) intrinsic space, resulting in a

training-data-independent feature representation; and (2) applying the same linear meth-

ods to the new and higher-dimensional feature vectors to yield a kernel-based learning

model, which is defined over the intrinsic space.

From the perspective of the kernel trick

If the LSP holds, the above two-step mapping procedure can ultimately lead to a kernel-

ized learning model, defined over the “empirical space” with a training-data-dependent

feature representation. In the literature, the tedious two-step re-mapping process has

often been replaced by a shortcut, nicknamed the “kernel trick.” Most authors present

the kernel trick as an elegant and simple notion. However, as evidenced by the follow-

ing two aspects, a deeper understanding will prove essential to fully appreciating the

limitation/power of the kernel trick.

• The pre-requisite of applying the kernel trick. First of all, note that not all linear

learning models are amenable to the kernel trick. Let us briefly explain the pre-

condition for applying the kernel trick. Conceptually, machine learning methods are

built upon the principle of learning from examples. Algebraically, the range of the

training vectors forms a learning subspace prescribing the subspace on which the

solution is most likely to fall. This leads to a formal condition named the learning

subspace property (LSP). It can be shown that the kernel trick is applicable to a linear

learning model if and only if the LSP holds for the model. In other words, the LSP is

the pre-requisite for the kernelizability of a linear learning model.

• The interplay between two kernel-induced representations. Given the kernel-

izability, we have at our disposal two learning models, defined over two different

kernel-induced vector spaces. Now let us shift our attention to the interplay between

two kernel-induced representations. Even though the two models are theoretically

equivalent, they could incur very different implementation costs for learning and pre-

diction. For cost-effective system implementation, one should choose the lower-cost

representation, irrespective of whether it is intrinsic or empirical. For example, if the

dimensionality of the empirical space is small and manageable, an empirical-space

learning model will be more appealing. However, this will not be so if the number of
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training vectors is extremely large, which is the case for the “big-data” learning sce-

nario. In this case, one must give serious consideration to the intrinsic model, whose

cost can be controlled by properly adjusting the order of the kernel function.

Presentation style and coverage of the book

For an introductory textbook, it would be wise to keep the mathematics to a minimum

and choose materials that are easily accessible to beginning students and practitioners.

After all, one of the overriding reasons for my undertaking of this project is because the

original book by Vapnik is mathematically so deep that it is accessible only to the most

able researchers.

Moreover, an editor keenly reminded me of the famous cliché that “for every equation

in the book the readership would be halved.” To be fair, my original intention was indeed

to write a mathematically much simpler textbook. The book can hardly be considered

a success by this measure – having included nearly a thousand equations, thirty or so

algorithms, and almost as many theorems.

From another viewpoint, however, such heavy use of equations does serve some very

useful purposes.

• This book includes nearly sixty numerical examples, many with step-by-step descrip-

tions of an algorithmic procedure. Concrete examples with numerical equations may

go a long way towards clarifying the mathematical algorithm or theorem. They

provide a tangible, and much less abstract, illustration of the actual procedure.

• This book contains equations specifying the bounds of computational complexities or

estimates of prediction performance associated with a learning model, each of which

could serve as a preliminary and quantitative guideline on the effectiveness of the

learning model for specific applications.

• The book aims at demonstrating how machine learning models can be integrated

into a recognition application system. Some theorems and equations in the book are

devoted to establishing connections between equivalent learning models, paving a

way to avoid redundant experiments on equivalent (and thus predictable) models. In

short, the mathematical equivalence both improves the understanding of the models

and prevents repetitive coding efforts.

• Compared with natural language or computer language (e.g. pseudocodes), the math-

ematics and equations provide a more concise descriptive language. With somewhat

casual mathematical language, the semi-formal presentation style of this book should

help beginning readers to more easily appreciate the power of the linear algebra and

statistical theory behind the machine learning tools.

Comprehensiveness versus cohesiveness

Since machine learning covers a vast range of subjects, the selection of materials for

this book inevitably involves a tradeoff between comprehensiveness and cohesiveness.

Admittedly, the coverage of the book is far from being comprehensive. The constraint

on space was certainly an important factor. On the other hand, there is already a large

volume of publications on SVM and its variants. In order to save space, it was necessary
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to leave out many SVM-related subjects, knowing that several excellent presentations

of SVM are already available in textbook form.

What sets the book apart from others is unlikely to be its scope of coverage; rather, it

may very well be the cohesive presentation and novel results.

• Cohesive presentation. The book aims at offering a cohesive, organized, and yet

balanced presentation with natural flow between sections. This streamlined approach

facilitates the presentation of key ideas in a single flow, without digression into the

analytical details. Moreover, the streamlined approach also reflects a personal (and

subjective) viewpoint on how to relate the loosely connected subjects.

• Novel results. Some significant novel results have been introduced here for the first

time in textbook form. For example, under the supervised scenario, DCA for optimal

subspace projection will outperform PCA, which is meant for use in unsupervised sce-

narios. A hybrid learning model of KRR and SVM, named Ridge-SVM, covers many

existing classifiers as special cases, including KDA, KRR, and SVM. With properly

adjusted parameters, it has been shown to deliver improved generalization and pre-

diction capability. The book also establishes the theoretical foundation linking kernel

methods and the rich theory in estimation, prediction, and system identification. Curi-

ously, the presentation of these novel ideas seemed to fall naturally into appropriate

places in their respective chapters.

Finally, due to its emphasis being placed on a cohesive and streamlined presenta-

tion of key ideas, the book necessarily had to forgo some otherwise important research

results. I would like to take this opportunity to express my most sincere apologies and

profound regret to researchers whose contributions have inadvertently been omitted

here.

Readership of the book

The book was designed for senior and graduate students with a diversity of educational

experiences in computer science, electrical engineering, financial engineering, applied

statistics, etc. The main focus of the book aims at taking a beginning student, with some

prior exposure to linear algebra, statistical theory, and convex optimization, through

an integrated understanding of the underlying principles and potential applications of

kernel-based learning models. In addition, the book should provide enough material for

it to be used either as a textbook for classroom instruction or as a reference book for

self-study.

• As a textbook for machine learning course. The book may be adopted for one-

semester senior or graduate courses in machine learning in, say, electrical engineering

and computer science departments. For example, by carefully picking some funda-

mental materials from Chapters 1 through 13, it should be possible to find enough

material to be organized into a one-semester course that covers feature representa-

tions, and unsupervised and supervised learning models, with balanced yet rigorous

treatments in statistics and linear algebra.
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Just like in other textbooks, exercises are included at the end of each chapter. They

should be useful for self-study and for probing into some of the more intricate aspects

of the subjects treated in the text.

• As a recommended or supplementary reference for courses on artificial intelli-

gence. The scope of the materials covered here is sufficiently broad to allow it to

be re-structured for many other educational purposes. For example, the book may

be adopted as a recommended reference for artificial intelligence and machine learn-

ing. It may also be adopted as a textbook/reference for a two-semester course. In

this case, the first semester can be devoted to fundamental concepts, with the second

semester covering advanced research areas such as big-data learning and kernel-based

statistical estimation. For the latter area, Chapters 14 and 15 present statistical esti-

mation techniques with errors-in-variables methods, Gauss–Markov theorems, and

kernel methods for time-series analysis.

• As a reference book for research and development. The book is also intended

for professional engineers, scientists, and system integrators who want to learn sys-

tematic ways of implementing machine learning systems. Throughout the book,

application examples are provided to motivate the learning model developed. The

book provides practitioners with basic mathematical knowledge so that they know

how to apply off-the-shelf machine learning codes to solve new problems. In addi-

tion, efforts have been made to make the book relatively self-contained. For example,

some basic matrix algebra and statistical theory are included in the book, making the

book more accessible to newcomers from other fields and to those who have become

rusty with some aspects of their undergraduate curriculum.
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