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Science and statistical data analysis

It is remarkable that a science which began with the consideration of

games of chance should have become the most important object of human

knowledge.

Pierre-Simon Laplace (1812)

Théorie Analytique des Probabilités

Why should a scientist bother with statistics? Because science is about dealing

rigorously with uncertainty, and the tools to accomplish this are statistical. Statistics

and data analysis are an indispensable part of modern science.

In scientific work we look for relationships between phenomena, and try to

uncover the underlying patterns or laws. But science is not just an ‘armchair’ activ-

ity where we can make progress by pure thought. Our ideas about the workings

of the world must somehow be connected to what actually goes on in the world.

Scientists perform experiments and make observations to look for new connec-

tions, test ideas, estimate quantities or identify qualities of phenomena. However,

experimental data are never perfect. Statistical data analysis is the set of tools that

helps scientists handle the limitations and uncertainties that always come with data.

The purpose of statistical data analysis is insight not just numbers. (That’s why

the book is called Scientific Inference and not something more like Statistics for

Physics.)

1.1 Scientific method

Broadly speaking, science is the investigation of the physical world and its phenom-

ena by experimentation. There are different schools of thought about the philosophy

of science and the scientific method, but there are some elements that almost every-

one agrees are components of the scientific method.
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2 Science and statistical data analysis

Figure 1.1 A cartoon of a simplified model of the scientific method.

Hypothesis A hypothesis or model is an explanation of a phenomenon in terms

of others (usually written in terms of relations or equations), or the suggestion

of a connection between phenomena.

Prediction A useful hypothesis will allow predictions to be made about the

outcome of experiments or observations.

Observation The collection of experimental data in order to investigate a

phenomenon.

Inference A comparison between predictions and observations that allows us

to learn about the hypothesis or model.

What distinguishes science from other disciplines is the insistence that ideas be

tested against what actually happens in Nature. In particular, hypotheses must

make predictions that can be tested against observations. Observations that match

closely the predictions of a hypothesis are considered as evidence in support of

the hypothesis, but observations that differ significantly from the predictions count

as evidence against the hypothesis. If a hypothesis makes no predictions about

possible observations, how can we learn about it through observation?

Figure 1.1 gives a summary of a simplified scientific method. Models and

hypotheses1 can be used to make predictions about what we can observe.

1 The terms ‘hypothesis’, ‘model’ and ‘theory’ have slightly different meanings but are often used interchange-
ably in casual discussions. A theory is usually a reasonably comprehensive, abstract framework (of definitions,
assumptions and relations or equations) for describing generally a set of phenomena, that has been tested and
found at least some degree of acceptance. Examples of scientific theories are classical mechanics, thermody-
namics, germ theory, kinetic theory of gases, plate tectonics etc. A model is usually more specific. It might be
the application of a theory to a particular situation, e.g. a classical mechanics model of the orbit of Jupiter. Some
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1.2 Inference 3

Hypotheses may come from some more general theory, or may be more ad hoc,

based on intuition or guesswork about the way some phenomenon might work.

Experiments or observations of the phenomenon can be made, and the results com-

pared with the predictions of the hypothesis. This comparison allows one to test

the model and/or estimate any unknown parameters. Any mismatch between data

and model predictions, or other unpredicted findings in the data, may suggest ways

to revise or change the model. This process of learning about hypotheses from data

is scientific inference. One may enter the cycle at any point: by proposing a model,

making predictions from an existing model, collecting data on some phenomenon

or using data to test a model or estimate some of its parameters. In many areas of

modern science, the different aspects have become so specialised that few, if any,

researchers practice all of these activities (from theory to experiment and back),

but all scientists need an appreciation of the other steps in order to understand the

‘big picture’. This book focuses on the induction/inference part of the chain.

1.2 Inference

The process of drawing conclusions based on what is already known is called

inference. There are two types of reasoning process used in inference: deductive

and non-deductive.

1.2.1 Deductive reasoning (from general to specific)

The first kind of reasoning is deductive reasoning. This starts with premises and

follows the rules of logic to arrive at conclusions. The conclusions are therefore

true as long as the premises are true. Philosophers say the premises entail the

conclusion. Mathematics is based on deductive reasoning: we start from axioms,

follow the rules of logic and arrive at theorems. (Theorems should be distinguished

from theories – the former are the product of deductive reasoning; the latter are

not.) For example, the two propositions ‘A is true implies B is true’ and ‘A is true’

together imply ‘B is true’. This type of argument is a simple deduction known as

a syllogism, which comprises a major premise and a minor premise; together they

imply a conclusion:

Major premise : A ⇒ B (read: A is true implies B is true)

Minor premise : A (read: A is true)

Conclusion : B (read: B is true).

Deductive reasoning leads to conclusions, or theorems, that are inescapable given

the axioms. One can then use the axioms and theorems together to deduce more

authors go on to distinguish hypotheses as models, and their parameters, which may be speculative, as they are
used in statistical inference. For now we have no need to distinguish between models and hypotheses.
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4 Science and statistical data analysis

theorems, and so on. A theorem2 is something like ‘A ⇒ B’, which simply says

that the truth value of A is transferred to B, but it does not, in and of itself, assert

that A or B are true. If we happen to know that A is indeed true, the theorem tells

us that B must also be true. The box gives a simple proof that there is no largest

prime number, a purely deductive argument that leads to an ineluctable conclusion.

Box 1.1

Deduction example – proof of no largest prime number

� Suppose there is a largest prime number; call this pN , the N th prime.
� Make a list of each and every prime number: p1 = 2, p2 = 3, p3 = 5, until pN .
� Now form a new number q from the product of the N primes in the list, and add one:

q = 1 +

N�

i=1

pi = 1 + (p1 × p2 × p3 × · · · × pN ) (1.1)

which is either prime or it is not.
� This new number q is larger than every prime in the list, but it is not divisible by

any prime in the list – it always leaves a remainder of one.
� This means q is prime since it has no prime factors (the fundamental theorem of

arithmetic says that any integer larger than 1 has a unique prime factorisation).
� But this is a contradiction. We have found a prime number q that is larger than

every number in our list, in contradiction with our definition of pN . Therefore our

original assumption – that there is a largest prime, pN – must be false.

Deduction involves reasoning from the general to the specific. If a general

principle is true, we can conclude that any particular cases satisfying the general

principle are true. For example:

Major premise : All monkeys like bananas

Minor premise : Zippy is a monkey

Conclusion : Zippy likes bananas.

The conclusion is unavoidable given the premises. (This type of argument is given

the technical name modus ponens by philosophers of logic.) If some theory is true

we can predict that its consequences must also be true. This applies to probabilistic

as well as deterministic theories. Later on we consider flipping coins, rolling dice,

and other random events. Although we cannot precisely predict the outcome of

2 It is worth noting here that the logical implication used above, e.g. B ⇒ A, does not mean that A can be derived
from B, but only that if B is true then A must also be true, or that the propositions ‘B is true’ and ‘B and A are
both true’ must have the same truth value (both true, or both false).
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1.2 Inference 5

individual events (they are random!), we can derive frequencies for the various

outcomes in repeated events.

1.2.2 Inductive reasoning (from specific to general)

Inductive reasoning is a type of non-deductive reasoning. Induction is often said to

describe arguments from special cases to general ones, or from effects to causes.

For example, if we observe that the Sun has risen every day for many days, we can

inductively reason that it will continue to do so. We cannot directly deduce that the

Sun will rise tomorrow (there is no logical contradiction implied if it does not).

The basic point about the limited power of our inferences about the real world

(i.e. our inductive reasoning) was made most forcefully by the Scottish philosopher

David Hume (1711–1776), and is now known as the problem of induction. The

philosopher and mathematician Bertrand Russell furnished us with a memorable

example in his book The Problems of Philosophy (Russell, 1997, ch. 4):

imagine a chicken that gets fed by the farmer every day and so, quite understandably,

imagines that this will always be the case . . . until the farmer wrings its neck! The chicken

never expected that to happen; how could it? – given it had no experience of such an event

and the uniformity of its previous experience had been so great as to lead it to assume the

pattern it had always observed (chicken gets fed every day) was universally true. But the

chicken was wrong.3

You can see that inductive reasoning does not have the same power as deductive

reasoning: a conclusion arrived at by deductive reasoning is necessarily true if the

premises are true, whereas a conclusion arrived at by inductive reasoning is not

necessarily true, it is based on incomplete information. We cannot deduce (prove)

that the Sun will rise tomorrow, but nevertheless we do have confidence that it

will. We might say that deductive reasoning concerns statements that are either

true or false, whereas inductive reasoning concerns statements whose truth value

is unknown, about which we are better to speak in terms of ‘degree of belief’ or

‘confidence’. Let’s see an example:

Major premise : All monkeys we have studied like grapes

Minor premise : Zippy is a monkey

Conclusion : Zippy likes grapes.

The conclusion is not unavoidable, other conclusions are allowed. There is no

logical contradiction in concluding

Conclusion : Zippy does not like grapes.

3 By permission of Oxford University Press.
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6 Science and statistical data analysis

But the premises do give us some information. It seems plausible, even probable,

that Zippy likes grapes.

1.2.3 Abductive reasoning (inference to the best explanation)

There is another kind of non-deductive inference, called abduction, or inference to

the best explanation. For our purposes, it does not matter whether abduction is a

particular type of induction, or another kind of non-deductive inference alongside

induction. Let’s go straight to an example:

Premise : Nelly likes bananas

Premise : The banana left near to Nelly has been eaten

Conclusion : Nelly ate the banana.

Again the conclusion is not unavoidable, other conclusions are valid. Perhaps

someone else ate the banana. But the original conclusion seems to be in some sense

the simplest of those allowed. This kind of reasoning, from observed data to an

explanation, is used all the time in science.

Induction and abduction are closely related. When we make an inductive infer-

ence from the limited observed data (‘the monkeys in our sample like grapes’) to

unobserved data (‘Zippy likes grapes’) it is as if we implicitly passed through a

theory (‘all monkeys like grapes’) and then deduced the conclusion from this.

1.3 Scientific inference

Scientific work employs all the above forms of reasoning. We use deductive rea-

soning to go from general theories to specific predictions about the data we could

observe, and non-deductive reasoning to go from our limited data to general con-

clusions about unobserved cases or theories.

Imagine A is the theory of classical mechanics and B is the predicted path of a

rocket deduced from the theory and the details of the launch. Now, we make some

observations and find the rocket did indeed follow the predicted path B (as well

as we can determine). Can we conclude that A is true? We may infer A, but not

deductively. Other conclusions are possible. In fact, the observational confirmation

of one prediction (or even a thousand) does not prove the theory in the same sense

as a deductive proof. A different theory may make indistinguishable predictions in

all of the cases considered to date, but differ in its predictions for other (e.g. future)

observations.

Experimental and observational science is all about inductive reasoning, going

from a finite number of observations or results to a general conclusion about
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1.4 Data analysis in a nutshell 7

unobserved cases (induction), or a theory that explains them (abduction). In recent

years, there has been a lot of interest in showing that inductive reasoning can be

formalised in a manner similar to deductive reasoning, so long as one allows for

the uncertainty in the data and therefore in the conclusions (Jeffreys, 1961; Jaynes,

2003).

You might still have reservations about the need for statistical reasoning. After

all, the great experimental physicist Ernest Rutherford is supposed to have said

If your experiment needs statistics, you ought to have done a better experiment!4

Rutherford probably didn’t say this, or didn’t mean for it to be taken at face value.

Nevertheless, statistician Bradley Efron, about a hundred years later, contrasted this

simplistic view with the challenges of modern science (Efron, 2005):

Rutherford lived in a rich man’s world of scientific experimentation, where nature gen-

erously provided boatloads of data, enough for the law of large numbers to squelch any

noise. Nature has gotten more tight-fisted with modern physicists. They are asking harder

questions, ones where the data is thin on the ground, and where efficient inference becomes

a necessity. In short, they have started playing in our ball park.

But it is not just scientists who use (or should use) statistical data analysis. Any

time you have to draw conclusions from data you will make use of these skills.

This is true for particle physics as well as journalism, and whether the data form

part of your research or come from a medical test you were given you need to be

able to understand and interpret them properly, making inferences using methods

built on the same basic principles.

1.4 Data analysis in a nutshell

The analysis of data5 can be broken into different modes that are employed either

individually or in combination; the outcome of one mode of analysis may inform

the application of other modes.

Data reduction This is the process of converting raw data into something more

useful or meaningful to the experimenter: for example, converting the voltage

changes in a particle detector (e.g. a proportional counter) into the records of

the times and energies of individual particle detections. In turn, these may be

further reduced into an energy spectrum for a specific type of particle.

4 The earliest reference to this phrase I can find is Bailey (1967, ch. 2, p. 23).
5 ‘Data’ is the plural of ‘datum’ and means ‘items of information’, although it has now become acceptable to use

‘data’ as a singular mass noun rather like ‘information’.
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8 Science and statistical data analysis

Exploratory data analysis (EDA) is an approach to data analysis that uses

quantitative and graphical methods in an attempt to reveal new and inter-

esting patterns in the data. One does not test a particular hypothesis, but

instead ‘plays around with the data’, searching for patterns suggestive of new

hypotheses.

Inferential data analysis Sometimes known as ‘confirmational data analysis’.

We can divide this into two main tasks: model checking and parameter esti-

mation. The former is the process of choosing which of a set of models

provides the most convincing explanation of the data; the latter is the process

of estimating values of a model’s unknown parameters.

Exploratory data analysis is all about summarising the data in ways that might

provide clues about their nature, and inferential data analysis is about making

reasonable and justified inferences based on the data and some set of hypotheses.

1.5 Random samples

Our data about the real world are almost always incomplete, affected by random

errors, or both. Let’s say we wanted to find the answer to some important question:

does the UK population prefer red or green sweets? We could survey the entire

population and in principle get a complete answer, but this would normally be

impractical. So we settle for a subset of the population, and assume this is rep-

resentative of the population at large. Our results from the subset of people we

actually survey is a sample and this is drawn from some population (of all the

responses from the entire population). The sample is just one of the many possible

samples that could be obtained from the same population.

But what we’re interested in is the population, so we need to use what we know

about the sample to infer something about the population. A small sample is easy

to collect, but smaller samples are also more susceptible to random fluctuations

(think of surveying just one person and extrapolating his/her answer to the entire

population); a larger sample is less prone to such fluctuations but is also harder to

collect. We also need to be sure to sample randomly and in an unbiased fashion – if

we only sample younger people, or people in certain counties, these may not reflect

the wider population. We need ways to quantify the properties of the sample, and

also to quantify what we can learn about the population. This is statistics.

You may be left thinking: what’s this got to do with experiments in the physical

sciences? We often don’t have a simple population from which we pull a random

sample. Each time we perform some measurement (or series of measurements) we

are collecting a sample of possible data. We can think of our sample as being drawn

from a population, a hypothetical population of all the possible data that could be
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1.5 Random samples 9

Figure 1.2 Illustration of the distinct concepts of accuracy and precision as applied
to the positions of ‘shot’ on a target.

produced from our measurement(s). The differences between samples are due to

randomness in the experiment or measurement processes.

1.5.1 Errors and uncertainty

The type of randomness described above is usually called random error (or mea-

surement error) by physicists (the term error is used differently by statisticians6).

Here, error does not mean a mistake as in the usual sense. To most scientists the

‘measurement error’ is an estimate of the repeatability of a measurement. If we take

some data and use them to infer the speed of sound through air, what is the error

on our measurement? If we repeat the entire experiment – under almost identical

conditions – chances are the next measurements will be slightly different, by some

unpredictable amount. As will further repeats. The ‘random error’ is a quantitative

indication of how close repeated results will be. Data with small errors are said to

have high precision – if we repeat the measurement the next value is likely to be

very close to the previous value(s).

In addition to random errors, there is another type of error called systematic

error. A systematic error is a bias in a measurement that leads to the values being

systematically either too low or too high, and may arise from the selection of

the sample under study or the calibration of the instrument used. Data with small

systematic error are said to be accurate; if only we could reduce the random error

we could get a result extremely close to the ‘true’ value. Figure 1.2 illustrates

the difference between precision and accuracy. The experimenter usually works

to reduce the impact of both random and systematic errors (by ‘beating down the

6 To a statistician, ‘error’ is a technical term for the discrepancy between what is observed and what is expected.
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10 Science and statistical data analysis

errors’) in the design and execution of the experiment, but the reality is that such

errors can never be completely eliminated.

It is important to distinguish between accuracy and precision. These two con-

cepts are illustrated in Figure 1.2. Precise data are narrowly spread, whereas accu-

rate data have values that fall (on average) around the true value. Precision is an

indicator of variation within the data and accuracy is a measure of variation between

the data and some ‘true’ value. These apply to direct measurements of simple

quantities and also to more complicated estimates of derived quantities (Chapters 6

and 7).

1.6 Know your data

There are several types of data you may be confronted with. The main types are as

follows.

Categorical data take on values that are not numerical but can be placed in

distinct categories. For example, records of gender (male, female) and particle

type (electron, pion, muon, proton etc.) are categorical data.

Ordinal data have values that can be ranked (put in order) or have a rating

scale attached, but the differences between the ranks cannot be compared. An

example is the Likert-type scale that you see on many surveys: 1, strongly

disagree; 2, disagree; 3, neutral; 4, agree; 5, strongly agree. These have a

definite order, but the difference between options 1 and 2 might not be the

same as between options 3 and 4.

Discrete data have numerical values that are distinct and separate (e.g. 1, 2,

3, . . . ). Examples from physics might be the number of planets around stars,

or the number of particles detected in a certain time interval.

Continuous data may take on any value within a finite or infinite interval. You

can count, order and measure continuous data: for example, the energy of

an accelerated particle, temperature of a star, ocean depth, magnetic field

strength etc.

Furthermore, data may have many dimensions.

Univariate data concern only one variable (e.g. the temperature of each star in

a sample).

Bivariate data concern two variables (e.g. the temperatures and luminosity of

stars in a sample). Each data point contains two values, like the coordinates

of a point on a plane.

Multivariate data concern several variables (e.g. temperature, luminosity, dis-

tance etc. of stars). Each data point is a point in an N-dimensional space, or

an N-dimensional vector.
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