Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin’s conjecture. The introductory chapters require only basic knowledge of algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry.

Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty.

Ivan Arzhantsev received his doctoral degree in 1998 from Lomonosov Moscow State University and is a professor in its department of higher algebra. His research areas are algebraic geometry, algebraic groups, and invariant theory.

Ulrich Derenthal received his doctoral degree in 2006 from Universität Göttingen. He is a professor of mathematics at Leibniz Universität Hannover. His research interests include arithmetic geometry and number theory.

Jürgen Hausen received his doctoral degree in 1995 from Universität Konstanz. He is a professor of mathematics at Eberhard Karls Universität Tübingen. His field of research is algebraic geometry, in particular algebraic transformation groups, torus actions, geometric invariant theory, and combinatorial methods.

Antonio Laface received his doctoral degree in 2000 from Università degli Studi di Milano. He is an associate professor of mathematics at Universidad de Concepción. His field of research is algebraic geometry, more precisely linear systems, algebraic surfaces, and their Cox rings.
All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: www.cambridge.org/mathematics.
Cox Rings

IVAN ARZHANTSEV
Moscow State University

ULRICH DERENTHAL
Leibniz Universität Hannover

JÜRGEN HAUSEN
Eberhard Karls Universität Tübingen

ANTONIO LAFACE
Universidad de Concepción
Contents

Introduction

1 Basic concepts
1.1 Graded algebras
1.1.1 Monoid graded algebras 7
1.1.2 Veronese subalgebras 10
1.2 Gradings and quasitorus actions 13
1.2.1 Quasitori 13
1.2.2 Affine quasitorus actions 16
1.2.3 Good quotients 20
1.3 Divisorial algebras 24
1.3.1 Sheaves of divisorial algebras 24
1.3.2 The relative spectrum 27
1.3.3 Unique factorization in the global ring 30
1.3.4 Geometry of the relative spectrum 32
1.4 Cox sheaves and Cox rings 35
1.4.1 Free divisor class group 35
1.4.2 Torsion in the divisor class group 39
1.4.3 Well-definedness 41
1.4.4 Examples 44
1.5 Algebraic properties of the Cox ring 47
1.5.1 Integrity and normality 47
1.5.2 Localization and units 50
1.5.3 Divisibility properties 52
1.6 Geometric realization of the Cox sheaf 56
1.6.1 Characteristic spaces 56
1.6.2 Divisor classes and isotropy groups 59
1.6.3 Total coordinate space and irrelevant ideal 63
1.6.4 Characteristic spaces via GIT 65
Exercises to Chapter 1 69
Contents

2 Toric varieties and Gale duality 75

2.1 Toric varieties 75

2.1.1 Toric varieties and fans 75

2.1.2 Some toric geometry 78

2.1.3 The Cox ring of a toric variety 82

2.1.4 Geometry of Cox’s construction 86

2.2 Linear Gale duality 89

2.2.1 Fans and bunches of cones 89

2.2.2 The GKZ decomposition 93

2.2.3 Proof of Theorem 2.2.1.14 96

2.2.4 Proof of Theorems 2.2.2.2, 2.2.2.3, and 2.2.2.6 100

2.3 Good toric quotients 103

2.3.1 Characterization of good toric quotients 103

2.3.2 Combinatorics of good toric quotients 107

2.4 Toric varieties and bunches of cones 110

2.4.1 Toric varieties and lattice bunches 110

2.4.2 Toric geometry via bunches 113

Exercises to Chapter 2 117

3 Cox rings and combinatorics 123

3.1 GIT for affine quasitorus actions 124

3.1.1 Orbit cones 124

3.1.2 Semistable quotients 128

3.1.3 A_2-quotients 133

3.1.4 Quotients of H-factorial affine varieties 137

3.2 Bunched rings 142

3.2.1 Bunched rings and their varieties 142

3.2.2 Proofs to Section 3.2.1 147

3.2.3 Example: Flag varieties 151

3.2.4 Example: Quotients of quadrics 155

3.2.5 The canonical toric embedding 161

3.3 Geometry via defining data 167

3.3.1 Stratification and local properties 167

3.3.2 Base loci and cones of divisors 172

3.3.3 Complete intersections 178

3.3.4 Mori dream spaces 181

3.4 Varieties with a torus action of complexity 1 186

3.4.1 Detecting factorial gradings 186

3.4.2 Factorially graded rings of complexity 1 191

3.4.3 T-varieties of complexity 1 via bunched rings 197

3.4.4 Geometry of T-varieties of complexity 1 202

Exercises to Chapter 3 207
Contents

4 Selected topics

4.1 Toric ambient modifications
4.1.1 The Cox ring of an embedded variety
4.1.2 Algebraic modification
4.1.3 Toric ambient modifications
4.1.4 Computing examples

4.2 Lifting automorphisms
4.2.1 Quotient presentations
4.2.2 Linearization of line bundles
4.2.3 Lifting group actions
4.2.4 Automorphisms of Mori dream spaces

4.3 Finite generation
4.3.1 General criteria
4.3.2 Finite generation via multiplication map
4.3.3 Finite generation after Hu and Keel
4.3.4 Cox–Nagata rings

4.4 Varieties with torus action
4.4.1 The Cox ring of a variety with torus action
4.4.2 H-factorial quasiaffine varieties
4.4.3 Proof of Theorems 4.4.1.2, 4.4.1.3, and 4.4.1.6

4.5 Almost homogeneous varieties
4.5.1 Homogeneous spaces
4.5.2 Small embeddings
4.5.3 Examples of small embeddings
4.5.4 Spherical varieties
4.5.5 Wonderful varieties and algebraic monoids

Exercises to Chapter 4

5 Surfaces

5.1 Mori dream surfaces
5.1.1 Basic surface geometry
5.1.2 Nef and semiample cones
5.1.3 Rational surfaces
5.1.4 Extremal rational elliptic surfaces
5.1.5 K3 surfaces
5.1.6 Enriques surfaces

5.2 Smooth del Pezzo surfaces
5.2.1 Preliminaries
5.2.2 Generators of the Cox ring
5.2.3 The ideal of relations
5.2.4 Del Pezzo surfaces and flag varieties

vii
Contents

5.3 K3 surfaces 385
 5.3.1 Abelian coverings 385
 5.3.2 Picard numbers 1 and 2 390
 5.3.3 Nonsymplectic involutions 397
 5.3.4 Cox rings of K3 surfaces 400

5.4 Rational \mathbb{K}^*-surfaces 405
 5.4.1 Defining data and their surfaces 405
 5.4.2 Intersection numbers 411
 5.4.3 Resolution of singularities 417
 5.4.4 Gorenstein log del Pezzo \mathbb{K}^*-surfaces 422

Exercises to Chapter 5 431

6 Arithmetic applications 437

6.1 Universal torsors and Cox rings 437
 6.1.1 Quasitori and principal homogeneous spaces 437
 6.1.2 Universal torsors 442
 6.1.3 Cox rings and characteristic spaces 449

6.2 Existence of rational points 454
 6.2.1 The Hasse principle and weak approximation 454
 6.2.2 Brauer–Manin obstructions 457
 6.2.3 Descent and universal torsors 459
 6.2.4 Results 461

6.3 Distribution of rational points 464
 6.3.1 Heights and Manin’s conjecture 464
 6.3.2 Parameterization by universal torsors and Cox rings 467

6.4 Toward Manin’s conjecture for del Pezzo surfaces 469
 6.4.1 Classification and results 469
 6.4.2 Strategy 474
 6.4.3 Parameterization via Cox rings 475
 6.4.4 Counting integral points on universal torsors 478
 6.4.5 Interpretation of the integral 485

6.5 Manin’s conjecture for a singular cubic surface 489
 6.5.1 Statement of the result 489
 6.5.2 Geometry and Cox ring 490
 6.5.3 Parameterization via Cox rings 491
 6.5.4 Counting integral points on universal torsors 493
 6.5.5 Interpretation of the integral 497

Exercises to Chapter 6 498

Bibliography 501

Index 517