Paternal Influences on Human Reproductive Success
Paternal Influences on Human Reproductive Success

Douglas T. Carrell, PhD
Department of Obstetrics and Gynecology, Department of Human Genetics, and the Andrology and IVF Laboratories at University of Utah School of Medicine, Salt Lake City, Utah, USA
CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107024489

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Paternal influences on human reproductive success / [edited by] Douglas T. Carrell, Ph.D., Andrology and IVF Laboratories, Department of Surgery (Urology), Department of Obstetrics and Gynecology, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.
pages cm
Includes bibliographical references and index.
1. Infertility, Male – Social aspects. I. Carrell, Douglas T.
RC889.P32 2013
616.6’921–dc23
2012038443

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.
This book is dedicated to my family, who is always supportive of my small efforts to expand our understanding of infertility and assisted reproduction and improve our therapies for infertile couples.
Contents

List of contributors page ix
Preface xi

Section 1: Advances in Understanding the Male Gamete
1. The reproductive fitness of the human male gamete 1
 Douglas T. Carrell
2. The sperm genome: effect of aneuploidies, structural variations, single nucleotide changes, and DNA damage on embryogenesis and development 6
 Kenneth I. Aston and Donald F. Conrad
3. The sperm epigenome: a role in embryogenesis and fetal health? 16
 Douglas T. Carrell and Jessie Dorais
4. Imprinted gene anomalies in sperm 27
 Cristina Joana Marques and Mário Sousa
5. Has the renewed interest in sperm RNA led to fresh insights? A critical review and hypothesis 38
 David Miller and David Iles
6. The role of the sperm centrosome in reproductive fitness 50
 Heide Schatten and Qing-Yuan Sun

Section 2: The Influence of Aging and Environmental Factors on Male Reproductive Fitness
7. The male biological clock 61
 Harry Fisch
8. The role of aging on fecundity in the male 70
 Csilla Krausz and Chiara Chianese
9. Aging, DNA damage, and reproductive outcome 82
 Aleksander Giwercman and Jens Peter Bonde
10. Paternal aging and increased risk of congenital disease, psychiatric disorders, and cancer 93
 Simon L. Conti and Michael L. Eisenberg
11. Sexual function in the aging male 103
 John R. Gannon, Jeremy B. Myers, and William O. Brant
12. Supplements and replacement therapies for the aging male and their effects on reproductive fitness 116
 Armand Zini and Naif Al-Hathal
13. Environment and lifestyle effects on fertility 129
 Marc A. Bea and Christopher M. Somers
14. Obesity and male infertility: is there an effect on embryogenesis? 141
 Oumar Kuzbari and Ahmad O. Hammoud

Section 3: Clinical Laboratory Concepts and Considerations
15. Intracytoplasmic sperm injection: does the sperm matter? 149
 Gianpiero D. Palermo, Queenie V. Neri, and Zev Rosenwaks
<table>
<thead>
<tr>
<th></th>
<th>Sperm selection and ART outcome: a means to overcome the effects of aging and abnormal spermatogenesis?</th>
<th>165</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Denny Sakkas</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Variability of human semen quality: caution in interpreting semen analysis data</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Kenneth I. Aston</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Semen characteristics and aging: technical considerations regarding variability</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Lars Björndahl</td>
<td></td>
</tr>
</tbody>
</table>

Index 191

Color plates are to be found between pp. 116 and 117.
Contributors

Naif Al-Hathal MD
McGill University, Royal Victoria Hospital, Department of Surgery, Division of Urology, Montreal, Quebec, Canada.

Kenneth I. Aston PhD, HCLD
University of Utah School of Medicine, Department of Surgery, Division of Urology, Andrology & IVF Laboratories, Salt Lake City, Utah, USA.

Marc A. Beal BSc, MSc
University of Regina, Department of Biology, Regina, Saskatchewan, Canada.

Lars Björndahl MD, PhD
Karolinska University Hospital, Centre for Andrology and Sexual Medicine, Andrology Laboratory, Huddinge, Stockholm.

Jens Peter Bonde MD, PhD
Copenhagen University, Bispebjerg Hospital, Department of Occupational and Environmental Medicine, Copenhagen, Denmark.

William O. Brant MD, FACS
University of Utah School of Medicine, Department of Surgery, Division of Urology Salt Lake City, Utah, USA.

Douglas T. Carrell PhD, HCLD
University of Utah School of Medicine, Department of Surgery, Andrology and IVF Laboratories, Department of Obstetrics and Gynecology, Department of Human Genetics, Salt Lake City, Utah, USA.

Chiara Chianese MS
University of Florence, Department of Clinical Physiopathology, Sexual Medicine and Andrology Unit, Florence, Italy.

Donald F. Conrad PhD
Washington University School of Medicine, Department of Genetics, Department of Pathology & Immunology, St. Louis, Missouri, USA.

Simon L. Conti MD
Stanford University School of Medicine, Department of Urology, Stanford, California, USA.

Jessie Dorais MD
University of Utah School of Medicine, Department of Obstetrics and Gynecology, Salt Lake City, Utah, USA.

Michael L. Eisenberg MD
Stanford University School of Medicine, Department of Urology, Male Reproductive Medicine and Surgery, Department of Obstetrics and Gynecology, Stanford, California, USA.

Harry Fisch MD
New York Presbyterian Hospital, Weill Cornell Medical College, Urology and Reproductive Medicine, New York, New York, USA.

John R. Gannon MD
University of Utah School of Medicine, Department of Surgery, Division of Urology, Salt Lake City, Utah, USA.

Aleksander Giwercman MD, PhD
Lund University, Skåne University Hospital Malmö, Reproductive Medicine Centre, Malmö, Sweden.

Ahmad O. Hammoud MD, MPH
University of Utah School of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Salt Lake City, Utah, USA.

David Iles BSc, PhD
University of Leeds, Faculty of Biological Sciences, Institute for Integrative and Comparative Biology, West Yorkshire, Leeds UK.
List of contributors

Csilla Krausz MD, PhD
University of Florence, Department of Clinical Physiopathology, Sexual Medicine and Andrology Unit, Florence, Italy.

Oumar Kuzbari MD
University of Utah School of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Salt Lake City, Utah, USA.

Cristina Joana Marques PhD
University of Porto (FMUP), Faculty of Medicine, Department of Genetics, Portugal.

David Miller BSc, PhD
University of Leeds, Faculty of Medicine and Health, Leeds Institute for Genetics, Health and Therapeutics, Division of Reproduction and Early Development, West Yorkshire, Leeds, UK.

Jeremy B. Myers MD
University of Utah School of Medicine, Department of Surgery, Division of Urology, Salt Lake City, Utah, USA.

Queenie V. Neri BSc
The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York, USA.

Gianpiero D. Palermo MD, PhD
The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York, USA.

Zev Rosenwaks MD
The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York, USA.

Denny Sakkas PhD
Boston IVF Inc., Waltham, Massachusetts, USA.

Heide Schatten MD
University of Missouri-Columbia, Department of Veterinary Pathobiology, Columbia, Missouri, USA.

Christopher M. Somers BSc, MSc, PhD
University of Regina, Department of Biology, Regina, Saskatchewan, Canada.

Mário Sousa MD, PhD
University of Porto and Centre for Reproductive Genetics Alberto Barros, UMIB, Institute of Biomedical Sciences Abel Salazar (ICBAS), Lab of Cell Biology, Porto, Portugal.

Qing-Yuan Sun PhD
Chinese Academy of Sciences, Institute of Zoology, State Key Laboratory of Reproductive Biology, Beijing, China.

Armand Zini MD
McGill University and St. Mary's Hospital, Royal Victoria Hospital, Department of Surgery, Division of Urology, Montreal, Quebec, Canada.
Preface

One theme that draws abundant attention from the world’s press is the theory of the imminent demise of human males. Whether it be due to reports of a "degenerating Y chromosome," advances in cloning technologies, the theory of an "ultimate revenge of women," or some combination of the three scenarios, the public seems to relish a sensational account of the impending extinction or irrelevance of the male. This book is not such an account. Indeed, the objective of this book is to summarize and explore the recently growing emphasis on the paternal role in reproductive fitness.

It is interesting that a book emphasizing the role of the male gamete in reproduction is necessary. While the necessity of sperm for normal reproduction has been known since the studies of Spallanzani, the role that the sperm play in forming a normal embryo has not been clear, and in fact is evolving rapidly. Our understanding of the male contribution evolved from the "spermist theory" promoted by Hartsoeker in the late seventeenth century that postulated a fully formed "homunculus" within a sperm cell, then shifted with the "epigenesis" theory, supported by Harvey and others, which held that both the oocyte and sperm were necessary for embryogenesis. Epigenesis was firmly established with the identification of chromosomes as the heritable component, however, the contribution of the sperm has largely been considered to only consist of a haploid set of chromosomes, while the oocyte has been looked upon as the controlling force for embryogenesis and the provider of the necessary factors for early embryogenesis. Ironically, the recent explosion of research into "epigenetics," a term related to the early developmental theory of epigenesis, has changed the paradigm of the possible importance of the male contribution to embryogenesis and reproductive fitness.

This book explores the current understanding of the role of sperm in reproductive success. Areas of interest include genetic factors, including DNA integrity, aneuploidy, structural variations, and mutations within the germline, as well as epigenetic factors and mechanisms, including epigenetic influences in normal embryogenesis, the role of sperm epigenetic abnormalities in infertility, and the effects of environmental factors on the epigenome. Since it is becoming increasingly common for men to father children later in life, the role of aging is carefully considered in several chapters, not only from a clinical perspective, but also with an eye towards the basic science of changes in spermatogenesis in the older male. Lastly, since fertilization and early embryogenesis are increasingly performed in the laboratory through assisted reproduction techniques, emerging laboratory concepts are also discussed.

I thank all who have assisted in the preparation of this book, particularly the chapter authors. This distinguished group of scientists and clinicians are the cutting edge of the field of male factors involved in reproductive success. I also thank my assistant, Lori Barnard, for her consistent energy and expertise in helping to move this book forward. Lastly, I thank my colleagues, especially those from my own clinic and laboratories, for their stimulating work and discussions that have helped to move the field forward, aid patients in need, and assist me in endeavors such as this book.