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I

Probability Spaces

Probability is, with the possible exception of Euclidean geometry, the most in- C 1–7
8, 9tuitive of the mathematical sciences. Chance and its language pervades our

common experience. We speak of the chances of the weather turning, getting
a raise, electing a candidate to political office, or a bill being passed; we bet on
sporting contests in office pools, toss a coin at the start of a game to determine
sides, wager on the sex of a newborn, and take a chance on the institutionalised
gambling that masquerades as state-sponsored lotteries. And, of course, games
of chance have an ancient and honoured history. Excavations of bone dice in ar-
chaeological digs in North Africa show that dicing was not unknown in ancient
Egypt, board games in which players take turns determined by the roll of dice
and card games of some antiquity are still popular in the age of the internet, and
the horse race survives as an institution. While the historical palette is rich and
applications pervasive, the development of a satisfactory mathematical theory
of the subject is of relatively recent vintage, dating only to the last century. This
theory and the rich applications that it has spawned are the subject of this book.

1 From early beginnings to a model theory

The early history of probability was concerned primarily with the calculation
of numerical probabilities for outcomes of games of chance. Perhaps the first
book written along these lines was by the eccentric Gerolamo Cardano, a noted
gambler, scholar, and bon vivant; his book Liber de Ludo Aleæ (Book on Games
of Chance) was written perhaps in the 1560s but only published posthumously
in 1663.1 Numerical calculations continued to dominate over the next two and

1The modern reader will find Cardano’s exhortations have weathered well: “The most funda-
mental principle of all in gambling is simply equal conditions . . . of money, of situation . . . and
of the dice itself. To the extent to which you depart from that equality, if it is in your opponent’s
favour, you are a fool, and if in your own, you are unjust.” This excerpt is from a translation of
Liber de Ludo Aleæ by Sydney Henry Gould which appears as an appendix in O. Ore, Cardano, the
Gambling Scholar, Princeton University Press, Princeton, NJ, 1953.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
9781107024472 - The Theory of Probability
Santosh S. Venkatesh
Excerpt
More information

http://www.cambridge.org/9781107024472
http://www.cambridge.org
http://www.cambridge.org


Probability Spaces

a half centuries awaiting the birth of a theory but the spread of applications
continued unabated until, in the modern day, scarce an area of investigation is
left untouched by probabilistic considerations.

Today the informed reader encounters probabilistic settings at every
turn in divers applications. The following is a representative list of examples, in
no particular order, that the reader will find familiar. (i) The conduct of opinion
polls—and what the results say about the population as a whole. (ii) Sampling
to determine the impact of an invasive species—or of pollutant concentrations.
(iii) The prediction of user preferences—for movies or books or soap—from
sporadic internet use. (iv) The search for order and predictability in the chaos
of financial markets—or of sunspot activity. (v) Robot navigation over uncer-
tain terrain. (vi) The analysis of noise in communications. (vii) The 3K back-
ground cosmic radiation and what it portends for the universe. (viii) The sta-
tistical physics of radioactive decay. (ix) The description of flocking behaviour
in wild geese and fish. (x) The analysis of risk in the design of actuarial tables.
(xi) Mendel’s theory of heredity. (xii) Genetic combination and recombination,
mutation. (xiii) The spread of infection. (xiv) Estimations of time to failure of
machinery—or bridges or aeroplanes. (xv) Investment strategies and probabili-
ties of ruin. (xvi) Queues—of telephone calls at an exchange, data packets at an
internet server, or cars in a highway system. (xvii) The statistical search for the
Higgs boson and other subatomic particles. The reader will be readily able to
add to the list from her common experience.

Following the fumbling early beginnings, inevitably numerical, of in-
vestigations of the science of chance, as discoveries and applications gathered
pace it became more and more necessary that the mathematical foundations of
the subject be clearly articulated so that the numerical calculations, especially
in areas that could not be readily tested, could be placed on firm mathematical
ground. What should the goals of such a theory be? Given the vast realm of ap-
plicability we must hold fast against the temptation to hew the theory too close
to any particular application. This is much as in how to reach its full flowering
geometry had to be sundered from its physical roots. The rôle and importance
of abstraction is in the extraction of the logical axiomatic content of the problem
divorced of extraneous features that are not relevant, and indeed obfuscate, to
provide a general-purpose tool that can be deployed to discover hitherto un-
suspected patterns and new directions. Such a clean axiomatic programme was
laid out by Andrei Kolmogorov in 1933.2

The key feature of the axiomatic approach is in beginning with a model
of an idealised gedanken chance experiment (that is to say, a thought experiment
which may never actually be performed but can be conceived of as being per-
formed). The model, to be sure, makes compromises and introduces convenient
mathematical fictions, emphasising certain features of the problem while de-

2English speakers had to wait till 1956 for a translation: A. N. Kolmogorov, Foundations of the
Theory of Probability, Chelsea, New York.
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I.2 Chance experiments

emphasising or ignoring others, both to permit a clear and unobstructed view of
essential features as well as to permit ease of calculation. Thus, for instance, we
make the pretence that a coin-tossing game persists indefinitely or that a gam-
bler plays with infinite resources; in the same vein, actuarial tables of lifespans
permit aging without bound—albeit with incredibly small probabilities—noise
waveforms are modelled as lasting for infinite future time, and so on.

In its insistence on a model for the phenomenon under investigation
as a starting point the axiomatic theory makes a clean break with the inchoate
idea of intuitive probability that we resort to in our daily experience. The clas-
sical wager of Laplace that the sun will rise tomorrow, for instance, has no place
in the theory abeyant a reasonable model of a chance experiment (that one can
conceive of being in repeated use); similar objections hold for assigning chances
to doomsday predictions of, say, terrorist nuclear attacks on major cities, or
the destruction of earth by a meteor, or to assigning chances for the discovery
of some hitherto unknown propulsion mechanism, and so on. This is unfor-
tunate and we may be reluctant to give up on instinctive, if unformed, ideas
of chance in all kinds of circumstances, whether repeatable or not. But as W.
Feller has pointed out, “We may fairly lament that intuitive probability is in-
sufficient for scientific purposes but it is a historical fact . . . . The appropriate,
or ‘natural,’ probability distribution [for particles in statistical physics] seemed
perfectly clear to everyone and has been accepted without hesitation by physi-
cists. It turned out, however, that physical particles are not trained in human
common sense and the ‘natural’ (or Boltzmann) distribution has to be given up
for the [‘unnatural’ or ‘non-intuitive’] Bose–Einstein distribution in some cases,
for the Fermi–Dirac distribution in others.”3 The worth of an axiomatic model
theory in mathematics is in the rich, unexpected theoretical developments and
theorems that flow out of it; and its ultimate worth in application is its observed
fit to empirical data and the correctness of its predictions. In these the modern
theory of probability has been wildly successful—however unsettling some of
its predictions to untrained intuition.

To illustrate the key features of the model it is best to begin with simple
chance-driven situations with which we are readily familiar.

2 Chance experiments

Our intuitive assignment of probabilities to results of chance experiments is
based on an implicit mathematical idealisation of the notion of repeated inde-
pendent trials. For instance, in a coin-tossing experiment, conditioned by a
complex of experience and custom, we are inclined to treat the coin as “fair”

3W. Feller, An Introduction to Probability Theory and Its Applications, Volume 1, 3rd Edition, p. 5. c©
John Wiley & Sons, 1968. This material is reproduced with permission of John Wiley & Sons, Inc.
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Probability Spaces

and to ascribe probabilities of 1/2 apiece for heads and tails ignoring possi-
bilities such as that of the coin landing on edge or never coming down at all.
Implicit here is the feeling that in a run of n tosses all 2n possible sequences of
heads and tails are equally likely to occur. If in a long run of n tosses there are
m heads, we expect that the relative frequency m/n of the occurrence of heads
in the tosses will be very close to 1/2, the accuracy getting better the larger n is.

Now, to be sure, no coin is really “fair”. Statistical analyses of coin flips
show invariably that heads and tails are not equally likely though the differ-
ence tends to be minute in most cases. Nonetheless, the mathematical fiction
that a coin is fair is convenient in that it focuses on the essential features of the
problem: it is not only simpler analytically but, for most applications, gives
predictions that are sufficiently close to reality. We make similar assumptions
about the throws of dice in the game of craps, the spin of a roulette wheel, or the
distribution of bridge hands in cards. The following simple examples illustrate
the key features of the modelling approach.

EXAMPLES: 1) A coin is tossed three times. Representing heads by H and tails
by T, the possible outcomes of the experiment may be tabulated in a natural
convention as HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT. It is clear that
these are the only possible outcomes of the idealised experiment and, abeyant
any reason to think otherwise, we suppose that all outcomes have equal chance
1/8 of occurrence. The event that exactly one head is seen may be identified
with the aggregate of outcomes consisting of the sequences HTT, THT, and
TTH and it is natural to assign to this event the probability 3/8.

2) The first throw in craps. A classical die consists of six faces which we may
distinguish by inscribing the numbers 1 through 6 on them (or, as is more usual,
by inscribing one through six dots on the faces). The dice game of craps begins
by throwing two dice and summing their face values. If the sum of face values
is equal to 2, 3, or 12, the player loses immediately; if the sum is 7 or 11, she
wins immediately; otherwise, the game continues. What are the chances that a
player at craps loses on the first throw? wins on the first throw?

As the only element that decides the result of the first throw is the sum
of face values it is natural to consider the outcomes of the experiment (as far
as the first throw is concerned) to be the numbers 2 through 12. What are the
chances we should ascribe to them? After a little thought the reader may come
up with the numbers listed in Table 1. As a loss on the first throw is associated

Outcomes 2 3 4 5 6 7 8 9 10 11 12

Probabilities 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Table 1: The sum of the face values of two dice.
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I.2 Chance experiments

with the aggregate {2, 3, 12}, it is now reasonable to ascribe to it the probability
1
36 + 2

36 + 1
36 = 1

9 . Similarly, a win on the first throw has associated with it the
aggregate of outcomes {7, 11} and accordingly has probability 6

36 + 2
36 = 2

9 . As
any craps player knows, it is twice as likely that she wins on the first throw as
that she loses on the first throw.

The critical reader may question the model for the experiment and may
prefer instead a model of outcomes as ordered pairs of values, one for each die,
the outcomes now ranging over the 36 equally likely possibilities, (1, 1), (1, 2),
. . . , (6, 6). In this model space, the event of a loss on the first throw may be as-
sociated with the aggregate consisting of the pairs (1, 1), (1, 2), (2, 1), and (6, 6),
that of a win on the first throw with the aggregate of pairs (1, 6), (2, 5), (3, 4),
(4, 3), (5, 2), (6, 1), (5, 6), and (6, 5). The corresponding probabilities then work
out again to be 1/9 and 2/9, respectively. A variety of models may describe
an underlying chance experiment but, provided they all capture the salient fea-
tures, they will make the same predictions. All roads lead to Rome. �

The language of coins, dice, cards, and so on is picturesque and lends
colour to the story. But in most cases these problems can be reduced to that of a
prosaic placement of balls in urns. The following simple illustration is typical.

EXAMPLE 3) An urn problem. Two balls, say a and b, are distributed in three
urns labelled, say, 1, 2, and 3. With the order of occupancy in a given urn irrele-
vant, the outcomes of the experiment are nine in number, assumed to be equally
likely of occurrence, and may be tabulated in the form

ab| − |−, −|ab|−, −| − |ab,

a|b|−, a| − |b, b|a|−, b| − |a, −|a|b, −|b|a.
(2.1)

The event that the second urn is occupied is described by the aggregate of out-
comes {−|ab|−, a|b|−, b|a|−,−|a|b,−|b|a} and hence has probability 5/9. �

The reader should be able to readily see how the coin and dice prob-
lems may be embedded into generic urn problems concerning the placement of
n balls into r urns. She may find some fun and profit in figuring out an appro-
priate urn model for the following catalogue of settings: birthdays, accidents,
target shooting, professions (or gender or age), occurrence of mutations, gene
distributions, and misprints.

The chance experiments we have considered hitherto deal with a finite
number of possible outcomes. But our experience equips us to consider situa-
tions with an unbounded number of outcomes as well.

EXAMPLE 4) A coin is tossed until two heads or two tails occur in succession. The out-
comes may be tabulated systematically in order of the number of tosses before
the experiment terminates, leading to the denumerably infinite list of outcomes
in Table 2. If the reader does not immediately believe that the assignment of
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Probability Spaces

Outcomes HH TT THH HTT HTHH THTT THTHH HTHTT · · ·
Probabilities 1

4
1
4

1
8

1
8

1
16

1
16

1
32

1
32 · · ·

Table 2: A sequence of coin tosses terminated when two successive tosses coincide.

probabilities is reasonable, a heuristic justification may be provided by the ar-
gument that, if we consider a very long, finite sequence of tosses of length n, a
fraction 1/4 of all such sequences begin with HH and likewise also with TT, a
fraction 1/8 of all such sequences begin with THH and also with HTT, and so
on. Allowing n to go to infinity permits the consideration of any terminating se-
quence of heads and tails. The objection that the experiment cannot in practice
last an infinite amount of time so that arbitrarily long sequences are unrealistic
in the model may be met with some force by the observation that, for the given
probabilities, the chances of requiring more than 100 tosses, say, before termina-
tion are 2·2−100. As this will require about 1038 performances of the experiment
before one such occurrence is detected, one could argue with some justification
that most of the assigned probabilities have not been fairly tested. In any case,
the reader may well feel that it is even more artificial to fix a stopping point
a priori, say at 50 tosses, numerical probabilities so chosen as to simply forbid
longer sequences by fiat. The practical justification of the model lies in the fact
that the assigned probabilities gel nicely with data for sequences of length up
to ten or so which carry most of the likelihood; and presumably also for longer
sequences though experimental data are abeyant given the fantastically small
chances of occurrence.

In this setting, the event that at least four tosses are required before
the experiment terminates is captured by the denumerably infinite aggregate of
outcomes HTHH, THTT, THTHH, and so on. The probability hence that at least
four tosses are required is given by

2

16
+
2

32
+
2

64
+ · · · =

2

16

(
1+

1

2
+
1

4
+
1

8
+ · · ·

)
=
2

16

/(
1−

1

2

)
=
1

4
,

as we identify the infinite sum with a geometric series in powers of 1/2. Like-
wise, to the event that the experiment concludes on an odd-numbered trial we
may ascribe the probability

2

8
+
2

32
+

2

128
+ · · · =

2

8

(
1+

1

4
+
1

16
+ · · ·

)
=
2

8

/(
1−

1

4

)
=
1

3
,

as we now encounter a geometric series in powers of 1/4. It is natural to extend
the idea of summing over a finite number of outcome probabilities to a denu-
merably infinite sum when events are comprised of a countably infinite number
of outcomes. �
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I.3 The sample space

What are the main features we can discern from simple chance exper-
iments of this form? We begin with a model for a gedanken experiment whose
performance, perhaps only in principle, results in an idealised outcome from
a family of possible outcomes. The first element of the model is the specifica-
tion of an abstract sample space representing the collection of idealised outcomes
of the thought experiment. Next comes the identification of a family of events
of interest, each event represented by an aggregate of elements of the sample
space. The final element of the model is the specification of a consistent scheme
of assignation of probabilities to events. We consider these elements in turn.

3 The sample space

R. von Mises introduced the idea of a sample space in 19314 and while his
frequency-based ideas of probability did not gain traction—and were soon to be
overtaken by Kolmogorov’s axiomatisation—the identification of the abstract
sample space of a model experiment paved the way for the modern theory.

We shall denote by the uppercase Greek letter Ω an abstract sample
space. It represents for us the collection of idealised outcomes of a, perhaps con-
ceptual, chance experiment. The elements ω of Ω will be called sample points,
each sample point ω identified with an idealised outcome of the underlying
gedanken experiment. The sample points are the primitives or undefined no-
tions of the abstract setting. They play the same rôle in probability as the ab-
stract concepts of points and lines do in geometry.

The simplest setting for probability experiments arises when the possi-
ble outcomes can be enumerated, that is to say, the outcomes are either finite in
number or denumerably infinite. In such cases the sample space is said to be
discrete. The examples of the previous section all deal with discrete spaces.

EXAMPLES: 1) A coin toss. The simplest non-trivial chance experiment. The
sample space consists of two sample points that we may denote H and T.

2) Three tosses of a coin. The sample space corresponding to the experiment of
Example 2.1 may be represented by the aggregate HHH, HHT, . . . , TTT of eight
sample points.

3) A throw of a pair of dice. The sample space consists of the pairs (1, 1), (1, 2), . . . ,
(6, 6) and has 36 sample points. Alternatively, for the purposes of Example 2.2
we may work with the sample space of 11 elements comprised of the numbers
2 through 12.

4) Hands at poker, bridge. A standard pack of cards contains 52 cards in four suits
(called spades, hearts, diamonds, and clubs), each suit containing 13 distinct

4A translation of his treatise was published in 1964: R. von Mises, Mathematical Theory of Proba-
bility and Statistics, Academic Press, New York.
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Probability Spaces

cards labelled 2 through 10, jack, queen, king, and ace, ordered in increasing
rank from low to high. In bridge an ace is high card in a suit; in poker an ace
counts either as high (after king) or as low (before 2). A poker hand is a selec-
tion of five cards at random from the pack, the sample space consisting of all(
52
5

)
ways of accomplishing this. A hand at bridge consists of the distribution

of the 52 cards to four players, 13 cards per player. From a formal point of view
a bridge hand is obtained by randomly partitioning a 52-card pack into four
equal groups; the sample space of bridge hands hence consists of (52)!/(13!)4

sample points. In both poker and bridge, the number of hands is so large that
repetitions are highly unlikely; the fresh challenge that each game presents con-
tributes no doubt in part to the enduring popularity of these games.

5) The placement of two balls in three urns. The sample space corresponding to
Example 2.3 may be represented by the aggregate of points (2.1).

6) The selection of a random graph on three vertices. A graph on three vertices may
be represented visually by three points (or vertices) on the plane potentially con-
nected pairwise by lines (or edges). There are eight distinct graphs on three
vertices—one graph with no edges, three graphs with one edge, three graphs
with two edges, and one graph with three edges—each of these graphs consti-
tutes a distinct sample point. A random graph (traditionally represented G3
instead of ω in this context) is the outcome of a chance experiment which se-
lects one of the eight possible graphs at random. Random graphs are used to
model networks in a variety of areas such as telecommunications, transporta-
tion, computation, and epidemiology.

7) The toss of a coin until two successive outcomes are the same. The sample space is
denumerably infinite and is tabulated in Example 2.4. Experiments of this stripe
provide natural models for waiting times for phenomena such as the arrival of
a customer, the emission of a particle, or an uptick in a stock portfolio. �

While probabilistic flavour is enhanced by the nature of the application
at hand, coins, dice, graphs, cards, and so on, the theory of chance itself is inde-
pendent of semantics and the specific meaning we attach in a given application
to a particular outcome. Thus, for instance, from the formal point of view we
could just as well view heads and tails in a coin toss as 1 and 0, respectively,
without in any material way affecting the probabilistic statements that result.
We may choose hence to focus on the abstract setting of discrete experiments
by simply enumerating sample points in any of the standard ways (though tra-
dition compels us to use the standard notation for these spaces instead ofΩ).

EXAMPLES: 8) The natural numbers N. The basic denumerably infinite sample
space consists of the natural numbers 1, 2, 3, . . . .

9) The integers Z. Another denumerably infinite sample space consisting of
integer-valued sample points 0, ±1, ±2, . . . .
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