The following index combines people, topics, techniques, and examples. Persons are cited by last name and one or two initials. References to figures are in **boldface**, preceded by **Pl.** if the figure also appears in the color insert. Entries pointing to footnotes go as page number followed by “n” and then footnote number, as with “74n1”.

abduction (a principal mode of numerical inference), 13, 27, 85–100

- in combination with consilience, 115, 289–290, 483–485
- in complex systems, 305
- definitions or characterizations of, xxviii, 5, 86–88
- in discriminant analysis, as unlikely to arise, 392
- examples of
 - anthropogenicity of global warming, 88–89, **Pl.3.4**
 - biology, 99–100
 - continental drift, the graphical argument for, **Pl.2.1**
 - faulty, 463, 470
 - heart attacks in wives of smokers, 259
 - lung cancer in wives of smokers, 262
 - from maps, 122, 127
 - in mathematics, 95
 - in medicine, 204, 256–262
 - and pathological science, 210–211
 - in physics, 95–96
 - in public health, 96–97
 - Scorpion wreckage, discovery of, 8, 97–98
 - in social psychology, 270
 - in solar system science, 280–284
 - and the fate of two space shuttles, 99
 - in time-series data, 263–265
 - *see also* under examples, main
 - grammar of the word, 86
 - intellectual precursors of, 86–87
 - in linear regression

 for the intercept, 257–259
 for the slope, 260–262
 as the failure of the matrix formalism, 312
 emphasis on selection, 290
 in morphometrics, 405, 7.19, 7.20, 7.25
 in multiple regression, as unlikely to arise, 244
 the two polarities of, 286
 psychological origin of, 91
 this argument is transcendental, 92
 surprise, the role of, 59–60, 88, 117, 259, 286
 see also under surprise; plausible rival hypotheses
 added-variable plots, *see under* multiple regression, special cases
 additive conjoint measurement, 379–380, 6.16
 agreement, reasonable, *see under* approximation,
 Kuhn’s theory of
 AIC, Akaike Information Criterion, 104, 334–338, 5.19
 example, the corpus callosum in schizophrenia, 338–344
 formulas for, 335, 337, 340n14
 alcohol
 dose, measurement of, 373
 **fetal exposure to, *see* fetal alcohol allometry, 308, 437–438, 6.9, 7.15
 anatomical variants, 44
 **“and so on,” *see* mathematical induction
 Andersen, P., 234
Anderson, D., 244, 252, 331, 334, 337
Anderson, T., 322, 492
Anson, B., 44
anthrax, Sverdlovsk 1979 epidemic of, 3, 35, 127, 4.6
one-sentence summary of, 3
anthropogenic greenhouse gases, effect on global temperature of, Pl.3.4
apagoge, 86
approximations
essential, 135–136
Kuhn’s theory of, 37–38, 178, 181, 262, 493
mathematical notation for, 175
in Perrin’s work, 178
arc length, index of a variable type, 360
arc-sine law, 46–48, 2.10
arithmetic into understanding (main theme of this book), xix, 497
Arrow, K., 279
asthma, epidemics of, in Barcelona, 129, 4.7, 200, 211
asymmetry, human facial, 455–456, 7.28
Atlantic Ocean, fit by E. Bullard to continents around, 19, Pl.2.1
atoms, existence and size of, see under Perrin
Atwater, B., 97–98
autism, as thimerosal poisoning, 207
average
definition, 131
as least-squares descriptor, 131
as maximum-likelihood, under a Normal assumption, 191–193
meaning of, as inseparable from theories about, 192
of non-numerical quantities, 142–143
original sense of the word, 129
precision of, 132–135
weighted, 134–135
Millikan’s modification according to expert knowledge of error, 148
regression slope as a weighted average of casewise slopes, 141
Avogadro’s law, see under Perrin
Bayes, T., scholium (fundamental question) of, 188
Bayesian inference, see under inverse probability
Belmont Report, 271–272
bending energy, see thin-plate spline
Benveniste, J., see under dilution, infinite
Benzécri, B., 378–379
Berkeley Earth Study, analysis of global climate change by, 107–109, 3.9
Berkeley Guidance Study, 240–241
Berr, W., xxviii
beta weights (β), see multiple regression, coefficients in bilateral symmetry, see symmetry, bilateral billiards table, as substrate for Bayesian inference, 188, 4.24
binomial distribution, 151–152, 4.11
see also coin flips
biology
abduction, biological examples of, 99–100
numerical inference in, 13, 18
rhetoric of unification arguments in, 30
see also under anthrax, asthma, double helix, Fetal Alcohol Spectrum Disorder, Ramachandran plot, schizophrenia, Snow
biplot (of an SVD), 353–354
in morphometrics, 362
Bloor, D., xxviii, 42
Bolhuis, J., 36
Boltzmann, L., 331
see also Maxwell–Boltzmann distribution
Bookstein, F.
email addresses of, xxiv
and passive smoking trials, 254
worked or published examples by
on brain damage in fetal alcohol disorders, 445–449, 7.22, 7.23, 7.24, 7.25
on brain damage in schizophrenia, 328–330, 338–343, 5.21, 443–445, 7.19
on fetal alcohol effects upon adult IQ profile, 372–375, 6.13, 6.14, 7.31, 461–463
on hominoid evolution, 362–364, 6.7
on human facial asymmetry, 455–456, 7.28
on human skull growth, 364–366, 6.9, 399, 6.26, 7.13, 7.15
on Pearson and his great folly, 466–471
on rodent skull growth, 398–399, 6.25, 7.5, 7.6, 7.9, 7.17, 7.18, 7.20
on strain statistics, see strain, statistics of on viremia in monkeys, 354–357
see also under thin-plate spline
Bookstein coordinates, see under shape coordinates, two-point
Bowman, C., xxiv, 244, 377–378
“Boys have more” (Google search), 3–4
brain, human, damage to, from prenatal alcohol exposure, see under fetal alcohol
Broadbent-Bolton data, 455
Brownian motion, 38, 49–50, 2.12, 4.19, 116, 179–182
certain origin of, see under Perrin
maximal disorder of, 4.19
Index 521

<table>
<thead>
<tr>
<th>Page</th>
<th>Index Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>index 521</td>
</tr>
<tr>
<td>183</td>
<td>orderly scaling of,</td>
</tr>
<tr>
<td>176–177</td>
<td>specific observable properties of,</td>
</tr>
<tr>
<td>178–179</td>
<td>principal finding, 4.40</td>
</tr>
<tr>
<td>331</td>
<td>Burnham, K., xxii,</td>
</tr>
<tr>
<td>275–276</td>
<td>Bullard, E., see under Atlantic Ocean</td>
</tr>
<tr>
<td>242–244</td>
<td>Bumpus, H., sparrow study of, 4.39</td>
</tr>
<tr>
<td>4.40</td>
<td>principal finding,</td>
</tr>
<tr>
<td>33</td>
<td>carbon dioxide, trend and circannual pattern of, 76, 3.2</td>
</tr>
<tr>
<td>364</td>
<td>chimpanzees, as skull data, 6.7</td>
</tr>
<tr>
<td>151</td>
<td>n (en choose kay”), symbol of counts of combinations,</td>
</tr>
<tr>
<td>32–33</td>
<td>cameras, consilences of, as machines,</td>
</tr>
<tr>
<td>263–266</td>
<td>Campbell, D.,</td>
</tr>
<tr>
<td>44</td>
<td>cancer biology, as fundamentally heterogeneous,</td>
</tr>
<tr>
<td>391–394</td>
<td>canonical variates analysis (CVA),</td>
</tr>
<tr>
<td>3.2</td>
<td>carbon dioxide, trend and circannual pattern of,</td>
</tr>
<tr>
<td>227</td>
<td>cases-by-variables matrix, 307</td>
</tr>
<tr>
<td>229</td>
<td>common causes, correlations for, 223</td>
</tr>
<tr>
<td>220–221</td>
<td>as one grand theme of statistics, 220</td>
</tr>
<tr>
<td>223</td>
<td>of multiple effects, 168</td>
</tr>
<tr>
<td>233</td>
<td>in the quincunx, 166, 220</td>
</tr>
<tr>
<td>234</td>
<td>and regression lines, 167, 7.34</td>
</tr>
<tr>
<td>235</td>
<td>Cecarelli, L., 30</td>
</tr>
<tr>
<td>319</td>
<td>computational tomography (CT) of the adult brain, 7.19</td>
</tr>
<tr>
<td>320</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>325</td>
<td>challenges, in multiple regression modeling, 252–262</td>
</tr>
<tr>
<td>338</td>
<td>Challenor, P., see Gulf Stream</td>
</tr>
<tr>
<td>339</td>
<td>Chargaff, E., see under double helix</td>
</tr>
<tr>
<td>62</td>
<td>centrifugal force,</td>
</tr>
<tr>
<td>284</td>
<td>Chimpanzees, as skull data, 364, 6.7</td>
</tr>
<tr>
<td>315</td>
<td>cholera, London epidemics of 1849, 1853, 1854, see under Snow</td>
</tr>
<tr>
<td>521</td>
<td>civic virtue, as mensurand of a Pearson study, 3, 466–471</td>
</tr>
<tr>
<td>4.39</td>
<td>one-sentence summary for, 3</td>
</tr>
<tr>
<td>7.34</td>
<td>computation types in, 71</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>71</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>207</td>
<td>cold fusion (pathological science),</td>
</tr>
<tr>
<td>406</td>
<td>complex organized systems, 14–15, 34, 291–478</td>
</tr>
<tr>
<td>262</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>37</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>316</td>
<td>cold fusion (pathological science),</td>
</tr>
<tr>
<td>483–485</td>
<td>confirmatory statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>complexity scale of Boulding for, 302</td>
</tr>
<tr>
<td>406</td>
<td>confirmed statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>302</td>
<td>confirmatory statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>316</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>347</td>
<td>Connecticut speeding crackdown, see plausible rival hypotheses</td>
</tr>
<tr>
<td>36</td>
<td>cognitive neuroscience,</td>
</tr>
<tr>
<td>33</td>
<td>cold fusion (pathological science),</td>
</tr>
<tr>
<td>483–485</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>483–485</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>302</td>
<td>confirmatory statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>316</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>347</td>
<td>Connecticut speeding crackdown, see plausible rival hypotheses</td>
</tr>
<tr>
<td>36</td>
<td>cognitive neuroscience,</td>
</tr>
<tr>
<td>33</td>
<td>cold fusion (pathological science),</td>
</tr>
<tr>
<td>483–485</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>302</td>
<td>confirmatory statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>316</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>347</td>
<td>Connecticut speeding crackdown, see plausible rival hypotheses</td>
</tr>
<tr>
<td>36</td>
<td>cognitive neuroscience,</td>
</tr>
<tr>
<td>33</td>
<td>cold fusion (pathological science),</td>
</tr>
<tr>
<td>483–485</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>302</td>
<td>confirmatory statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>316</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>347</td>
<td>Connecticut speeding crackdown, see plausible rival hypotheses</td>
</tr>
<tr>
<td>36</td>
<td>cognitive neuroscience,</td>
</tr>
<tr>
<td>33</td>
<td>cold fusion (pathological science),</td>
</tr>
<tr>
<td>483–485</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>302</td>
<td>confirmatory statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>316</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>347</td>
<td>Connecticut speeding crackdown, see plausible rival hypotheses</td>
</tr>
<tr>
<td>36</td>
<td>cognitive neuroscience,</td>
</tr>
<tr>
<td>33</td>
<td>cold fusion (pathological science),</td>
</tr>
<tr>
<td>483–485</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>302</td>
<td>confirmatory statistical analyses for, as unlikely,</td>
</tr>
<tr>
<td>496</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>316</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>405</td>
<td>consilience (a principal mode of numerical inference), 13, 27, 28, 29–37</td>
</tr>
<tr>
<td>347</td>
<td>Connecticut speeding crackdown, see plausible rival hypotheses</td>
</tr>
</tbody>
</table>
consilience (cont.) and Einstein’s law of the photoelectric effect, 149–150, 4.10 between Kepler’s laws and Newton’s law of gravitation, 66, 68 and the Maxwell–Boltzmann distribution, 4.23 and Newton’s apple, 28–30 and obedience behavior, 4.50 and Planck’s constant, 148 in the Scorpion sinking, 5–10 in seafloor spreading, 22–27, 2.5 and ulcers, 4.25 see also under examples, main in morphometrics, 405 in multiple regression, usually unavailable, 244 numbers, special role of, 30–31, 39–40 and pathological science, 210–211 in physics, 40, 57; see also Kuhn, Wigner quantifying, 36 requisites for visualization in, 28, 57–58 the slide rule, as a machine for, 219 trust in, as the foundation of the natural sciences, xxvii, 30, 186 Consilience (book), 29 continental drift, 18–27 magnetometer data and, 22 paleomagnetism and, 19–21 one-sentence summary for, 3 contrastive method (J. S. Mill), 86 Coombs, C., 279 coordinates for the double helix, 218, 4.28 Cartesian, 33, 410 polar, 62 copper, heat capacity, meta-analysis of, 4.41 Coriolis force, 60, 62–63, 2.20 corpus callosum, in human brain studies, 5.20, 7.21, 7.22, 7.23, 7.25, 8.1 details of permutation testing, 453 correlation formula for, 171, 222 Pearson’s data as exemplifying, 4.17, 7.36 as product of two regression coefficients, 222 modified quincunx for, 4.29, 221–222 as a regression between standard scores, 4.29 correlation matrix, 320, 369, 373 not suited for principal components analysis of shape coordinates, 361, 362 Wright’s modification of, 369 correspondence analysis, see under singular value decomposition covariance distance, 6.22, 394–399 pattern, for human skull growth, 6.26 pattern, for rodent skull growth, 6.25 explained by the uniform term of shape variation, 439 see also relative eigenanalysis covariance matrix, 357 rank, in PLS, 372 crease (morphometric features), 7.20, 444 Cretaceous-Tertiary extinction, see under Alvarez Crick, F., see under double helix Cromwell, O., skull of, 3, 464–466, 7.32 crude factor, see Meeth constant, 357 cudos (κνδος), “honor,” acronym for a set of scientific norms, 41 curves, types of, 407 see also ridge curve, symmetry curve Darwin, C., 163, 185 DeHaene, S., studies of reading, 274 detective stories, as a model for numerical inference, 11, 91 determinantal rule, for intersections of lines, 140 diet, as confound in environmental tobacco studies, see under environmental tobacco smoke dihedral angles, 5.2 see also Ramachandran plot dilution, infinite, Benveniste study of, 208–210, 4.26 direct effect, direct path, see under multiple regression, as path model; path analysis discriminant analysis linear, 242–244, 6.18, 387, 6.19, 6.21, 387–391 example of, see under Bumpus’s sparrows quadratic, 387, 6.20 examples of, 5.9, 8.4 unlikely to lead to surprise, 392 disorder, 161 dissimilarity, see distance matrix distance matrix example of, 5.9 Procrustes shape distance, Procrustes form distance, see under Procrustes shape distance; Procrustes form distance see also principal coordinates analysis distances, commensurability of, as a principle of consilience, 28 distribution, see binomial distribution; Mardia–Dryden distribution; Normal distribution; prior distribution; random walk DNA (deoxyribonucleic acid), see under double helix “doctors study” of smoking and cancer, 96 domino PLS, 377
double-centered data, see principal coordinates analysis
double helix, 72, 214–220, 285
Chargaff’s rule for base-pair counts in DNA, 99, 216–217, 219
discovery, as an abduction, 219
discovery, as a consilience, 215, 219
one-sentence summary for, 3
X-ray crystallographic image of, 215, 4.27

Double Helix, The (book), 116, 214
Duncan, O., xxii, 278
e, Euler’s constant, the base of natural logarithms, passim
E, expectation operator, 168
earthquakes
in Seattle, xxii, 97–98
worldwide, 2.2
question posed by this figure, 22
economics, 278
Edgewarp (computer program), Pl.2.8, Pl.7.14, 425
Edgeworth, F., 141, 248
Edwards, A., 193–201
see also under Interoculular Trauma Test
effects, direct, indirect, and total, in multiple regression, 229, 233
effect sizes, in analysis of complex systems, 337
eigenanalysis, 309
Einstein, A., 3, 84, 96, 143–145, 179–180, 218n11, 490
elasticity, 45
ellipses
in geometry, 60–61
in gravitational physics, 69
in statistical data analysis, 171–73, 4.18
ellipsoids
in geometry, 6.6
in principal-components analysis, 322–324
variation of the principal axes of, 357–359
Elsasser, W., 13, 21, 42–43, 70, 160
empty space, as dominant feature of multivariate patterns for complex systems, 294–296, 5.1, 5.3
abductions deriving from, 296
endophrenology, 447
entropy (physical concept)
relative, Gibbs’s inequality regarding, 331
maximized by a Normal distribution, 161, 315
environmental tobacco smoke, 3, 116, 251, 253–262
and heart attack risk, 256–259
and lung cancer risk, 260–262
one-sentence summary for, 3
epidemiology, role of multiple regression in, 244–252
equation, error in the, in linear regression, 137
linear regression as the minimization of the mean square of these, 139–140, 4.8
equipoise, 201
Euler, L., see e; mathematics, Note 7.1
EVAN (European Virtual Anthropology Network), xxiii, 426
Eve, see Visible Female
evolution, hominoid, 362–364, 6.7
evolutionary psychology, limits of abduction and consilience in, 213, 274–276
Ewald, P., contemporary version of Koch’s postulates by, 205–206
examples, main, of this book, see under Alvarez, anthrax, asthma, corpus callosum, double helix, environmental tobacco smoke, evolution, Fetal Alcohol Spectrum Disorder, growth, Hertzsprung–Russell diagram, IPCC, Livingstone, Millikan, obedience, Perrin, Ramachandran plot, schizophrenia, Scorpion, seafloor spreading, Snow, Tetrahymena, ulcers, viremia
see also under Bookstein, examples by excursion statistics, see random walk expected value of log likelihood, see AIC “explained” variance via correlations, 222–223
see also under multiple regression extrapolation, of a shape change, 445n6 see also create extremes, rhetoric and risks of, 75–76
fact, scientific, see under Fleck factor, 162, 396
general role in epidemiological studies, 252
Wright’s method for extracting, 369
special, 369
factor analysis, 368–370
Guttman’s models for, 472–473
factorial function (n!)
definition of, 151
Stirling’s approximation for, 152, 173–175
FASD, see under fetal alcohol
Feller, W., 46
Felsenstein, J., xxii, xxiv
fetal alcohol
effects of exposure to, at low doses, 15, 372–375, 461–463
Fetal Alcohol Spectrum Disorder (FASD)
fetal alcohol (cont.)
in the adult brain, 3, 7.21, 7.22, 7.23, 7.25, 491
legal and forensic aspects, 449–451, 5.9, 7.25
behavior in, 5.6, 5.7
corpus callosum in, 5.9, 7.21, 7.22, 7.23, 7.25
in relation to executive function, 448, 7.24
discovery of, 97
the face in, 296, 5.4
in the infant brain, 3, 485–489
one-sentence summary form for, 3
test scores in, 5.5
Feynman, R., 62–63, 484
on pathological science, 212
Fisher, R., 96, 242, 310
Fleck, L., xxviii, 14, 42, 93, 185, 301, 481, 490
Flury, B., 362, 398
force
gravitational, see under Newton’s law of gravitation
as metaphor, xxvii, xxviii, 272, 468–470
see also centrifugal force, Coriolis force
forensic neurology, see fetal alcohol spectrum disorders, legal and forensic aspects
fractals, random walks as, 4.19, 184
Franklin, R., 215, 219, 493
Freedman, D., xxi, 122, 220
scale of practicality of regression of, 233–234
Friedrich, C., see under Wanderer
fruitcake, as metaphor for social measurement, xxii
Galton, F., 46, 404, 466–471
averaged photography by, 34
breadth of work by, 163
Pearson and, 466–467
quinccux machine of, 46, 162, 4.13
invention of, in holograph, 4.15
relation to coin flips, 163–164
regression, discovery of, 4.14
Gauss, K.
the average of a Normal distribution is the likeliest mean, 193
if the average is the likeliest value, the data must be Normal, 314
see also Normal distribution
Gauss–Laplace synthesis, 191–193
general systems theory, 301–302, 499
Generalized Procrustes Analysis (GPA), 412–413, 7.3
the Procrustes shape coordinates it produces, 413–414, 7.4
genausesy, 33
geologists, relative cognitive nonclosure of, 19
geometric morphometrics (GMM), see morphometrics
generality, 1.1, 11
of covariance matrices, 397–398
of multiplication, see hyperbolic paraboloid of scientific visualization, 57–58
Gerard, R., 13, 71
Gesamtkunstwerk, see rules of morphometrics, first
Gibbs, J., 315
Gibbs’s inequality, 331
GMM, see morphometrics
Goldstein, I. and H., 129, 4.7
Google, 3–4
Gould, S., 51
Gower, J., 382
Granger causality, 89n5
Green, W., xxiv, Pl.2.8, 338, Pl.7.14, 402
greenhouse gases, anthropogenic forcing of, see IPCC
Greenwald, A., propaganda study of, 272–273, 4.51
grids
examples, see rules of morphometrics, fourth random fields over, 326–328, 5.15
as representations of shape patterns, see thin-plate spline
simplifications of, 439–443
see also partial warps
see also rules of morphometrics, fourth
growth, analysis of
by added-variable plots, 240, 4.37
by grids, 366, 6.9
examples, see under Bookstein, examples, human skull growth and rodent skull growth
growth axis, of the human skull, 438
Guillemin, J., see anthrax
Gulf Stream, risk of collapse of, 110–111
Guttmann, L., 472–473
Hagen’s hypothesis (Normality of psychophysical variables), 139n2, 160–161
Hansen, J., approach to climate change of, 106–107
see also NOAA
hat matrix, 233
heart attacks, risk of, from environmental tobacco smoke, 3, 256–259, 285
platelet aggregation as explanation of, 259, 4.44
Helicobacter pylori, see under ulcers
helix, double, see under double helix
Index 525

Herrnstein, R., 276–277
Hertzsprung–Russell diagram (astronomy), 291–293, 5.1, 492
heterogeneity of cancer biology, 44
hidden, 160
in high-exposure groups, 247
interferes with consilience in the rhetoric of biology, 43
as a mechanism for generating correlation, 227
of random walks, when analyzed inappropriately, 51
of strain, see under thin-plate spline, bending energy
“hockey stick” (overstated statistical model of global warming), 76–78
hominid evolution, as example of principal component analysis, 362–366
Huff, D., 4
hyperbolic paraboloid, 15, 346–349, 6.1, 6.2
alternating fourfold rotational symmetry of, 349
as the blend of two oppositely opening parabolas at 90°, 348–349
for depicting individual terms of an SVD, see singular value decomposition as the finding, in a low-dose fetal alcohol study, 6.13
as the surface \(z = xy \), 347
hypotheses, scientific
a-priori choice of, as unhelpful for studies of complex systems, 482
discriminant analysis as testing, 385
the kinetic theory as, see under Perrin likelihood of, see under likelihood ratios multiplicity of, as a strength of morphometrics, 482
null, as lacking a role in most competent numerical inferences, 200
ignorance, assumptions about in Bayes’s scholium, 188
as justification for the Normal distribution, 315
in morphometrics
as justification for the isotropic Mardia–Dryden distribution, 417
as justification for the thin-plate spline, 403
indirect effect, indirect path bounds on, from a meta-analysis, 260–261
Wright’s equations example, 368
and PLS, 368–369
see also under multiple regression, as path model; path analysis
individuality, 16

see also heterogeneity inference, numerical
abduction, see under abduction arithmetic and, 105, 289
Bayesian, see under prior distributions and complex systems studies, 300–301, 494–498
deduction, 86, 92
detective stories and, 10, 91, 99
the double helix, as the best biological example ever, 219–220
examples of, in one sentence each, 3
induction, 86, 92
see also mathematical induction and Koch’s postulates, 205–206
norms of, 12
apparently incongenial to the psychological and social sciences, with some exceptions, 272–280
rhetorical form of, 3–5
strong, see under strong inference as the subject of this book, xix, 16, 494, 499
visualization and, 1.1, 57–58, 3.3, Pl.3.4, 85
see also under Latour inference, statistical, 491–492
information, Shannon’s quantification of, 331–332
information matrix in bioinformatic PLS, 377–378
Fisher’s, 310
integers and continua, see mathematics, Note 4.5
the Pythagorean epiphany, xxvii, 152
sum of the squared reciprocals of the, see mathematics, Note 7.1
integration, 439
interaction, in causal reasoning, 252, 302, 311, 337, 462–463, 7.31, 498
interrupt, of a regression line, 135, 142, 145, 148, 238, 285, 335–336, 5.19
Intergovernmental Panel on Climate Change, see IPCC
Interocular Trauma Test (ITT), xxvii, 76, 129, 260, 292
interrupted time series design, 263–265
inverse probability, 188–191
prior distributions and, 178, 189
see also likelihood ratios
Ionian enchantment, 30
IPCC (Intergovernmental Panel on Climate Change)
Fifth Assessment Report, 74n1
Fourth Assessment Report (FAR), 74–90
anthropogenicity of global warming, Pl.3.4, 13, 74–85
© in this web service Cambridge University Press www.cambridge.org
Index

IPCC (cont.)
as a classic abduction, 88–90, 95
global temperature change
contributors to, 75
treatment by, 76–77, 3.2, 3.3
see also hockey stick
greenhouse gases, treatment by, 3.1
methodology of not explaining events, 89–90
refutation by Hansen, 106–107
policy implications of, 84–85, 3.6
visualizations, quality of, 85
see also IPCC

Jaynes, E., xxi, 289, 314, 315, 331
Jeffreys, H., 26, 193–201, 289, 314
Jeffreys’s paradox, with increasing sample size, 196–197
Josephson, B., on variations in the strength of abductions, 90
Juan de Fuca Ridge, see seafloor spreading

Kahneman, D., xx, 279, 493
Keeling, C., and the Keeling curve, 76, 3.1
see also IPCC
Kepler’s laws, 64–65
as abductions from Newton’s law of gravitation, 66, 68
see also Newton’s law of gravitation
kinematic quantities, 132
kinetic theory, use by Perrin, 176–177
Koch’s postulates, 205; see also Ewald, P
Konrad Lorenz Institute for Evolution and Cognition Research, xx, xxiii, 70
Krantz, D., 379
Krieger, M., on the craft of physics, 96
Krzanowski, W., xxi
Kuhn, T., xxii, 12, 13, 15–16, 35, 38–40, 71, 93, 94, 101, 262, 286, 359, 484, 495
argument for the centrality of strong inference, 100–101
normal science, concept of, 39
persistent anomalies, analysis of, 39–40
as abductions, 93–94
limits of, in the historical natural sciences, 491
Kullback-Leibler (K-L) divergence, 333–334, 5.18

Lagemaat, R. van de, xxi
landmarks, in morphometrics, 404, 406–409, 7.1, 464
see also rules of morphometrics, first
Langmuir, I., 207

Laplace, P., see under likelihood ratios
Gauss–Laplace synthesis, 191–193
latent variable scores, see Partial Least Squares, two-block, interpretation in terms of scores
Latour, B., 31–33, 484
laws, physical
auxiliary assumptions underlying, 136, 180, 200
and consilience, 179
see also under Perrin
often are linear, 137, 181–182, 4.21
fit by linear regression, as weighted averaging, 4.8
significance testing in, 199
see also under Newton’s law of gravitation;
Millikan; Wigner
least-squares methods
average as, 131
Gauss–Laplace synthesis of, 191–193
straight-line fits (linear laws) as, 135–142
see also Millikan; multiple regression
LeGrand, H., narrative of continental drift of, 19–26
Lettvin, N., 354
lever, as example of consilience, 29
likelihood ratios, 116, 193–198
and the AIC, 338, 340
−2 times the log of, distributed as a chi-square, 315
in Hansen’s approach to global warming, 107
in Jeffreys’ approach to hypothesis testing, 193–196
Laplace’s theorem, 189
maximum likelihood, principle of, 190
average as maximum likelihood, under a Normal assumption, 191–193
are not to be found in NHSST, 196, 198–201
as corrected for number of parameters, see AIC
on the quincunx, 166–167
see also inverse probability
linear multivariate analysis, 290
not conducive in general to abduction or consilience, 311–312
Lipton, P., on “inference to the best explanation,” 87, 94, 96
Livingstone, F., 34, 212–213, 276, 491
logarithm
as the function for which
\[f(xy) = f(x) + f(y), \]
159, 332, 395–396
as the geometry of the slide rule, 395–396
of the likelihood function
in discriminant analysis, 242, 387
see also likelihood ratios, AIC
of a Normal distribution, 4.12
as a useful transform for growth data, 237, 4.36

log-likelihood, see under likelihood ratios, AIC

London, England, cholera epidemics in, see under Snow

longitudinal analysis, see under Berkeley Growth Study; Vilmann

lung cancer, risk of
from environmental tobacco smoke, 3, 260–262, 285
from smoking, 96–97

machines
Alvarez’s, 281–283
the astronomers’, 19, 291
Galton’s, 163–165
for the Maxwell-Boltzmann distribution, 4.22
Millikan’s, 145
and PLS analysis, 372
the slide rule, as a machine for abduction, 219
Wigner’s characterization of, 6, 31, 33
Maddox, J., on the infinite dilution experiment, 208–210
magnetic resonance (MR) images of the brain, 7.19
magnetic reversals, see under seafloor spreading magnetometer data, see under continental drift malaria, evolution of, 212–213
Mandelbrot, B., 46, 184
mandible, template for the morphometrics of, 433–436, Pl.7.14
Mardia, K., xxiii, 294, 402, 454
Mardia–Dryden distribution, of shapes, 417
Margenau, H., 55–57, 2.18
Marshall, B., 116, 490; see also ulcers
Martens, H., xxi, 377, 405n1
Martin, R., 406, 464, 7.1
mathematical induction, 95, 175
mathematics
appearance of brilliance in, 175; see also under Wigner
obscenity of, in the reader’s youth, xxii
notes, mathematical
Note 4.1, on extended equalities, 131–132, 141
Note 4.2, on coin models, 134
Note 4.3, on what a step in a derivation is, 151–152
Note 4.4, on clever tricks, 156
“Interlude,” on the geometry of the regression line and the ellipse, 171–173
Note 4.5, on the interplay between integers and continua, 174–175
Note 4.6, maximum likelihood: symbols or reality?, 192

Note 5.1, derivation of the precision matrix, 321–322
Note 5.2, why does the arithmetic mean exceed the geometric mean?, 324–326
Note 7.1, A wonderful identity of Euler’s, 474–476
power of, xxvii
relation to scientific understanding, xix, 4
role in natural philosophy, xxvii
role in scientific training, xxii
as a set of stratagems for symbol manipulation, 66
unreasonable effectiveness of, in the physical sciences, see under Wigner
matrix (mathematics)
arithmetic of (+ and ×), 307
labels of rows and columns, 15, 309–310
general nature of, 306–307
notation, failure of, as grounds for abduction, 312
notation of multiple regression in, 233
rank, 350, 372
shift matrix, 310
subordination of, in complex systems analysis, 15, 311
incompatible with most forms of feature selection, 300
adding more subscripts, 310
varieties of, in statistical data analysis, 5.9
covariance structure, 307–308
data structure, 308
gridded surface, 307
operator, 307
pattern of distances, 309
quadratic form, 308–309
see also cases-by-variables matrix, correlation matrix, covariance matrix, distance matrix, hat matrix, image matrix, information matrix, precision matrix, singular value decomposition
Maxwell, J. (British physicist), 37, 144, 294
Maxwell–Boltzmann distribution, 37, 328
derivation by Maxwell, 158
as the most disordered distribution, 161
experimental confirmation of, 186–188, 4.23
mean centering, 141
mean square, 132; see also least squares measurement, measurements
additive conjoint, see additive conjoint measurement
in biology, 43–44
regarding the double helix, 215
design of, 183, 184–185
for complex adaptive systems, 360–362
in developmental psychology, 37

© in this web service Cambridge University Press www.cambridge.org
measurement, measurements (cont.)
foundations of, 36
in physics, 37
indirect, via regression, 140
for questions with one principal explanandum,
Chapter 4 passim
repetition with variation, importance of
in Alvarez' s study, 281–283
in Milgram' s study, 4.50
in Perrin' s study, 177-178, 183
see also under Collins
in science in general, xxviii, 40
in the context of theory confirmation, 40, 101, 188
cannot precede understanding, in Kuhn' s view, 495
medial axis, 5.23, 343–344
medical images
as consilience, 33
multiple approaches for organizing, 343
as provoking a renaissance in biometrics, 72
as a variable type, 360
see also computed tomography, magnetic resonance
Meehl, P., 199, 303n4
Merton, R., 12, 41
meta-analysis, 41, 256, 259, 4.45
Christmas tree (type of plot), 260, 4.45
metrological chain, the Alvarez example of, 35
Michelson and Morley, experiment of, 96, 143
microstates, as unsuited for biological measurement, 44
microwave background radiation, 5.8
midsagittal plane, 362, 434, Pl.7.14
Milgram, S., 14, 117, 491; see also under obedience
Mill, J., 85
Millikan, R., study of the photoelectric effect by, 14, 115, 143–150, 285, 490
measurements, design of, 145, 4.9, 4.10
overruling of linear regression by, 145–148
Planck's constant, estimates of, 148
skepticism of, 144
overruled by data, 150
one-sentence summary of, 3
as an example of the “unreasonable effectiveness of mathematics,” 150
Mills, C., 279–280
Mitteroecker, P., 394–399, 419
Mladeˇc (archaic human skull), 364
modularity, 439
molecular magnitudes, see under Perrin
Moon, orbit of the, 27, 2.7
moral reasoning, contemporary experimental approaches to, 272
morphometrics, 402–461
as exemplar of analyses of complex organized systems, 15, 44, 482
shape coordinates as structured variables, 360
data flow in, 403; see also rules of morphometrics
brief history of, 404–405
the unusually broad role of hypotheses in, 482
permutation testing and, 453
principal components analysis in, see rules of morphometrics, second
principal coordinates analysis in, see rules of morphometrics, second
rules of, see rules of morphometrics
templates and, Pl.7.14
examples, see under human skull growth, rodent skull growth, schizophrenia
Mosteller, F., 239–241
“Mrs. Ples” (hominoid skull), 363
multiple regression assumptions of, in epidemiological studies, 226–227, 244–252
plausibility of, Freedman's scale for, 233–234
predictable failures of, 252
adjustment for bias, 250
biological plausibility, 247–248
confounders, assumptions regarding, 251
dose-response relationships, 248–249
breadth of evidence, 249–250
for challenging models that are otherwise plausible, 252
coefficients of, as direct effects, 229
examples
artificial example: Success on IQ and SES, 224, 4.31, 4.32
in studies of environmental tobacco smoke, 116, 253–262
indirect effects, meta-analytic estimates of, 257, 4.43, 260–261
as part of linear discriminant analysis, see under Bumpus
malaria in West Africa, see under Livingstone as incapable (by itself) of driving numerical inferences, 251–252, 497
the three interpretations of
causal and least-squares analyses are arithmetically the same, 232–233
as counterfactual, 227–231, 4.32, 233
“holding constant,” 206, 230–231
as path model, 231, 4.33, 233, 6.10
direct and indirect effects, 229
as least-squares fit, 231–233
see also normal equations
modeled as geometry, 4.31
special cases of
analysis of covariance, 234–239, 4.34
ecological fallacy in, 4.35, 237
added-variable plots, 239–240, 4.37, 4.38
linear discriminant analysis, 242–244, 4.40
variance, “explained” and “unexplained,” language of, 223
with uncorrelated predictors, 224–227, 4.32
see also additive conjoint measurement
multiplication
geometrization of, see hyperbolic paraboloid
and rank-one matrices, see singular value decomposition
“multivariate statistics,” see linear multivariate analysis

N (Avogadro’s number), 179, 186
see also under Perrin
Nash, L., 29
Nature, assumptions regarding, see ignorance; law, physical
Nature (journal), 208–210
Neanderthals, skull data of, 364, 6.7
Nebeleme, Der Wanderer über dem, see Wanderer Netflix Prize, won by an SVD algorithm, 354
network diagrams, 5.11
Newton’s law of gravitation, 28, 2.7, 58–70, 143
as both mathematics and physics, 68–70
relevance of the inverse-square formulation, 59
NHSST, see significance testing
Nisbett, R., studies of culture, 273–274
NOAA (National Oceanographic and Atmospheric Administration), approach to climate change of, 107, 3.8
Nobel prizes, see under Alvarez, Arrow, Crick, Einstein, IPCC, Kahneman, Marshall, Millikan, Perrin, Warren, Watson
nomogram, 380
Normal distribution, 14, 46, 2.10, 116, 154–163
in biology, only an idealization, 160
no longer a requisite for using textbook statistics, 162
ignorance, as Jaynes’s justification for its use, 315
in mathematical statistics, 161–163
its two independently measureable and interpretable parameters, 183
as characterized by the linearity of all regressions, 169
the reproducing characterization, 314
sums of Normals are again Normal, 161, 162, 166
as “most disorderly” for given mean and variance, 161, 315
see also entropy
notation and properties, 154
“width” at the inflections is 2 standard deviations, 156
“bell curve” as exponential of a parabola, 4.12
origin of the normalizing constant $1/\sqrt{2\pi}$ of, 156
origins
distribution of shots at a target, 159
evenly spaced increments of a Brownian motion, 159
see also under Perrin
inhomogeneity is possible, 163, 166
see also Umple-bonus model
appropriately scaled limit of binomials, 153, 4.11, 4.12
Galton’s quincunx, 163, 4.15
in scientific sampling and survey research, 160, 161
and temperature change, at continental scale, 106–107, 3.7
normal equations, in least squares, 140, 230, 233, 6.10
as weighted sums of the errors-in-equations, 139
null-hypothesis statistical significance testing (NHSST), see significance testing numbers, role in science of, xxvii
obedience, Milgram’s experiment on, 266–272, 285
“authority of the experimenter,” 270
 calibration as consilience, 267–270, 4.50
basic dramaturgy, 266–267
ethical issues, 270–272
choice of a mensurand, 4.49, 269–270
observer-expectancy effect, 277
off-diagonal entries
of a correlation matrix, see under factor analysis
of the inverse of a covariance matrix, see under precision matrix
Olson, E., 72
On the Mode of Communication of Cholera, see Snow
organisms, as complex organized systems, 160, 402
Ornstein–Uhlenbeck process, 316n7
“orphan tsunami,” see Seattle, earthquakes near Oxnard, C., xxiv
paleoanthropology, limits of abduction and consilience, in, 213, 301
paleomagnetism, see under continental drift
Pangæa, Panthalassa, 19
paraboloid, 348–349, 6.2
parapsychology, as pathological science, 207–208
Partial Least Squares (PLS), 366–372
and additive conjoint measurement, 379
by count of separate measurement blocks
two-block
as a path analysis, 6.11
as an SVD, 371
iterative algorithm for, 375–376, 6.15
interpretation in terms of scores, 371
example from fetal alcohol psychology,
6.14
example from endophrenology, 448–449,
7.24
three-block
algorithm for, 376–377, 6.15
multiblock (“domino PLS”), 377
and passive smoking, according to the U. S.
Surgeon General, 254
for strain energy against shape change, 7.30
structured variables in, 372, 402
see also shape coordinates
styles of, 366–367
partial warps, 423, 439, 7.7, 7.17, 7.18
passive smoking, see environmental tobacco
smoke
path analysis, path coefficients, 140, 162, 367–368
see also under multiple regression, as path
analysis
pathological science, 207–208
Feynman’s views on, 212
Langmuir’s and Rousseau’s criteria for, 207
pattern languages, 306n5
patterns, see complex organized systems
Pauling, L., 214–215, 219
PCA, see principal components analysis
PCO, see principal coordinates analysis
Pearl, J., xxii, 220, 353
Pearson, K., xxii, 15, 34, 53–55, 2.17, 315, 361, 443, 476, 499
and civic virtue, 466–471
and Cromwell’s skull, 463–466
and the inheritance of human height, 168–171,
4.16, 4.17, 7.34, 7.36
see also under correlation, formula for;
principal components; chisquare; civic virtue
Peirce, C. S., xxviii, 4, 12, 13, 85–86, 91–92, 150, 303, 405, 491
periodic table of the elements, 18, 52–53, 2.14, 2.15, 2.16
permutation testing, 451–452, 7.26
Perrin, J., study of molecular magnitudes, 4, 11,
14, 37–38, 40–41, 116, 175–186, 284, 285, 490
abductive in form, 179
atmosphere, rarefaction of the, 177
consilience
as explicit goal of, 176
as achieved, 183–184
the kinetic hypothesis, 176
measurements, design of, 177–178, 185–186
origins of, in Brownian motion, 176–177
verified as regards both slope and uncertainty,
181–182
Einstein’s equipartition law for, 182
random walk, as one component of the study,
179–182, 4.19
one-sentence summary of, 3
variations of experimental conditions, 178, 181
around a line, themselves lawful, 182
weight of a particle, as measureable
intermediary, 177
photoelectric effect (physics), see under Millikan
photography, averaged, see under Galton
physics, as a domain specialized for abduction, 96
role of abduction and consilience in, 143–144
physiognomy, 34, 5.3
π (pi), unexpected appearances of, 156, 474–476
Planck’s constant (h), precision of Millikan’s
estimate of, 148
plasticity (of organismal form), 44–45
plate tectonics, see under continental drift
Platt, J., xxiii, 13, 101–104, 482, 491
on mathematics, 103
on the social sciences, 103–104
plausible rival hypotheses, 263–266
PLS, see Partial Least Squares
Pölya, G., 87–88, 95, 159, 173a8, 324
Popper, K., 477
power laws, for biological growth, 237
pragmatism (American school of philosophy), as
context of abduction, 100
precision matrix, 318–321, 369
principal components analysis
characterizations of
as uncorrelated extrema of variance, 358
low-rank least-squares fits to data, see
singular value decomposition
for dimension reduction prior to covariance
distance analysis, 398–399
common, 362
examples
hominid evolution, 362–366, 6.7, 6.8, 6.9
rodent skull growth, 7.5, 7.16
interpretation as patterns, 361
scores as weighted averages of structured variable lists, 359–360
for the patterns of small variance, 361
for multidimensional random walks, 50–51, 2.13, 289, 473–474
and principal cooordinates analysis, 384
power method for, 376
statistical aspects
variation of the principal directions of, Anderson’s formula, 359
Anderson’s statistic for meaningfulness of, 322–324, 5.12, 328, 363n4
contraindicated when showing clusters known a-priori, 364
see also singular value decomposition
principal coordinates analysis, 381–384, 6.17
and principal components analysis, 384
examples, using covariance distance, 398–399
relative warps as principal coordinates of Procrustes shape distance, 415
see also singular value decomposition; rules of morphometrics, second
prior distribution, 192–193
in Perrin’s study, 178, 184
see also under inverse probability
principal warps, see partial warps
Procrustes (mythical Greek), 410n1
Procrustes average shape
as coefficient matrix in the projection notation, 419
as nuisance parameter, 416–417
Procrustes distance
algorithms for, 411–412, 7.2
has no biological content, 404
as common metric for shape variables, 361, 402, 414, 419
Procrustes form distance, 419–420
Procrustes form space, 6.7, 420, 424
see also rules of morphometrics, third
Procrustes registration, 338, 344, 412–414, 7.4
restoring the Centroid Size component, 419–420
see also shape coordinates
Procrustes shape distance, 410–412, 7.2
Procrustes shape space, 289
as projection down from digitizing space, 417–419
subspaces of, 418, 7.17
proof
“decisive,” 178, 179, 286
“incontrovertible,” 122, 126
see also mathematics, notes on Prossinger, H., xxiv
proteomics, see Ramachandran plot
psychology, see evolutionary psychology, social psychology
psychophysics, see Hagen’s hypothesis
quadric surfaces, see ellipsoid; hyperbolic paraboloid; discrimination, quadratic
quasi-experimental designs, 265
Queteletian fallacy, 162
quincunx, see Galton
Raff, A., see under Zebra Diagram
Ramachandran plot (proteomics), 293–296, 5.2, 5.3, 491, 492
randomness, 14, 312–331
as a null, vs. clinical inutility, 204
random walk, 45–51, 316–318
distribution of an excursion statistic, 317–318, 5.10
intuitive inaccessibility of, 48–50
and the Guttman scale model, 473
in Perrin’s study of Avogadro’s number, see under Perrin
principal components of, 7.37
rank, of a matrix, 350
of Procrustes shape coordinates, 414n5
Rao, C., 158
regression
and the AIC, 5.19
and climate change, see Berkeley Earth elliptical geometry of, 168, 171–173, 4.18
typical Victorian example of, 4.16, 4.17
intercept of the line on the ellipse, 173
Freedman’s scale of practicality of, 233–234
intercept, see under intercept
on the quincunx, 165–167, 4.14
regression line, as prediction or explanation, 167
not necessarily causal, 238
limits of the linear argument, 262
the case of multiple regression, 231
as one of a pair of lines, 169, 4.17, 223
see also under correlation
slope, see under slope
see also laws, physical, often are linear
“regression to the mean,” 173, 223
relabeled reflection, 454
relative eigenanalysis, 6.22
see also covariance distance
relative warps, 362, 416
see morphometrics, principal components in replication, see Collins
rete mirabile, as metaphor for complex systems analysis, 495
retroduction, 92n9
see abduction
Reyment, R., xxi, xxiv, 405n1
ridge curve, 407
examples, on the human mandible, 434–436, Pl.7.14
Rohlf, F. J., xxiv, 402
Rosenthal, R., 277–278
Rothman, K., xxi
Rousseau, D., 42, 207
Ruhla, C., 186–187
rules of morphometrics, 15
first, 407
examples, 6.8, 6.25, 6.26, 7.1, 7.14, 7.19, 7.22, 8.1
second, 415
examples, 5.9, 5.20, 5.21, 6.7, 7.5, 7.13, 7.19, 7.22, 7.30, 8.3
third, 420
examples, 6.7, 7.6, 7.13
fourth, 426
examples, 6.9, 7.9, 7.13, 7.15, 7.16, 7.17, 7.18, 7.19, 7.23, 7.24, 7.28, 8.4
Russell, B., xxvii
sample size, and significance testing, see under Jeffreys
Saturday Review, xxii
scaling
of shape data, see Centroid Size
of variables, 132
see also under correlations
schizophrenia, morphometric examples on, 328, 5.16, 5.17, 443–445, 7.19
sciences, unity of the, 30
scientific fact, definition of, see under Fleck
scientific paper, format of, xx
Scorpion, a sunken submarine, 3, 5–11, 204
finding it
as an abduction, 97–98
as the closure of a numerical inference, 10
visualization and, 18
seafloor spreading, 3, 18–27, 2.6, 211
as an abduction, 98
the Juan de Fuca ridge map and, 22, 2.4
magnetic reversals and, 22, 26, 2.3, 2.4, 2.5
Seattle, earthquakes in or near, xxii, 98–99
Seidler, H., xxiii
selection
of biometric data, 43
eigenanalysis as, 309
emphasis upon, in numerical inference for complex systems, 290
rules for, in typical complex systems studies, 300
semilandmarks, Pl.7.10, Pl.7.14, 426–437, 456–459
and bilateral symmetry, 457–458, 7.29
examples of human brain images, 5.20, Pl.7.10
human skull growth, 7.13
formula for, 427
interpretation, 431–432
as an additional parameter for the relabeling group, 427
single-point prototype for, 428–429, 7.11
informal statistic for, 340
on surfaces, 432
working from a template, 433–437, Pl.7.14
see also thin-plate spline
Semmelweis, I., principal discovery of, as an abduction, 86–87
Shannon, C., 331
shape coordinates
Procrustes, 410–415
see also rules of morphometrics, second
two-point, 439–443, 491n2
see also under variables, structured
sickle-cell anemia, evolution of, 212–213
significance testing
the Bayesian replacement, 193–198
and health bureaucracies, 201
domains of unsuitability
for studies of coin-flipping, 195
see under Jeffreys paradox
for studies of complex systems, 304
replacement by extended distributions, 492
see under singular value decomposition
as an impediment to the development of morphometrics, 405
as responsible for parapsychology, 208
in a linear multivariate context, 311
null-hypothesis statistical (NHSST) as deplorable, xxii, 83, 116, 198–201, 211
with the exception of the “strong form,” 199, 284
single-factor model, 396; see also factor, general
singular value decomposition (SVD), 14, 289, 349–354, 375–376, 482
as decomposition of the sum of squared matrix entries, 352
formula for, 351
associated identities, 352
interpretation of second and higher singular vectors, 361
least-squares property, 353
central role in the pattern analysis of organized systems, 350, 483
regarding abduction, 483–484
regarding consilience, 484–485
rank-1 example, 351, 6.3
iterative algorithm for, 375–376, 6.15
rank-2 example (viremia in monkeys), 354–357
salience of the findings, vis-à-vis a PCA, 357
regression coefficients, singular vector elements as, 353
see also under its special cases: Partial Least Squares, principal components analysis, principal coordinates analysis
SIV (simian immunodeficiency virus), example of an SVD, 354–357
skull, human, in midsagittal section, Pl.7.10
Slice, D., xxiv
slide rule, 4.28, 219, 6.23, 396
sliding landmarks, see semilandmarks
slope (in regression analysis)
abduction on, 260–262
in biology, 100
consilience on, 148, 178, 4.21
formula for
in simple regression, 140
in multiple regression, see multiple regression, as path model
as weighted average of casewise slopes, 141
small multiples, principle of (visualization), 81, 3.5, 89
Snow, J., on the mode of “communication” (dissemination) of cholera, 14, 115, 117–126, 211, 249, 284, 285, 490
abduction and, 118, 123, 126
Broad Street pump, role of, in this inference
interpretation of the 1854 epidemic near, 118
map of, 4.1
natural experiment, logic of the, 122, 200
counterfactual summary of, 126
shoe leather, as characterization of his methodology, 97, 122
one-sentence summary for, 3
water companies of London, role of, in inference, 118–126
death rates by neighborhood in 1853, 4.2
death rates by neighborhood by water company in 1854, 4.4, 4.5
map of, Pl.4.3
vis-à-vis the Marshall-Warren ulcer studies, 204
social class
as confound, in studies of fetal alcohol damage, 15, 461–463
as a consideration in Pearson’s studies of inheritance, 169n7, 7.34, 468–470
social psychology, abduction and consilience in, 272–274, 276–278
social sciences
abduction and consilience in, 15–16
critiques of numerical inferences in, various examples, 272–280
Kuhn’s comments on, 41
types of measurement, 278
Wilson’s comments on, 36
sociobiology, 36, 274–276
sociology, limits of abduction and consilience in, 278–280
space, Euclidean models for, 28
spacetime
Galilean models of, 28
role in visualizations, 57–58
sparrows, effect of a snowstorm upon, see under Bumpus
spectrum, index of one type of variable list, 360
splenium–intercept point, 8.1, 8.2, 8.3
spline, thin-plate, see thin-plate spline
standard deviation, 132
standard error of the mean, 134
standard scores (in correlational analysis), 221
statistics
inutility of standard courses in, xxii
a 20th-century curriculum for, 302–303
a 21st-century curriculum for, 494, 496–500
role in physics, 54–57
Stirling’s approximation for n!, 152, 174, 196; see also factorial
Stoppard, T., Rosencrantz and Guildenstern are Dead, 93
strain, statistics of, 459–461, 7.30
strain energy, relation to bending energy, 425, 7.30
Streissguth, A., xxii, 296, 5.4, 5.7, 372–375
strong inference, 13, 100–103, 211, 280–284
in complex organized systems, 334, 338
definition of; 5
Platt’s characterization of, 101
studentized residuals (in multiple regression), 233
subitizing (direct apprehension of small counts), 178
submarine, see Scorpion
“Suddenly I became aware” (comment of J. Watson), 217, 491
sum of squares, 131, 132; see also least squares as an energy term, in interpreting an SVD, 361
surprise, 117, 144, 210, 217, 247, 296, 296n2,
300, 303–304, 312, 394, 481, 484, 496
as a component in the definition of abduction, xxviii, 86
in a grid, 326, 5.14
in an image, 330
surprise (cont.)
in an investigation of random walk, 318
Alvarez’s iridium anomaly, 281, 4.53
arguing against surprise where it is unwanted, 259
see also plausible rival hypotheses
SVD, see singular value decomposition
swept area (in gravitational physics), 64
Switzerland, 2003 summer temperatures in, 90
symmetry, 26, 158, 190, 226, 361
bilateral, 454–456, 7.27, 7.28
reductionism vs. holism as an example of, 35
of semilandmarks, 456–458
substituting the reflection plane for a landmark, 459
symmetry curve, 407, 445, 7.21
Taleb, N., xxi
template (algorithmic schematic of a semilandmark scheme), 433–436, Pl.7.14
tensor, as a report of a uniform shape change, 443
teratology, see epidemiology; fetal alcohol
Tetrahymena (protist), 237–239, 4.36
thin-plate spline, 403, 421–426
lack of any biological basis for, 425
bending energy of, 423
construction of, 7.8, 424
kernels, in 2D and 3D, 425
prototypes, 7.7
visual processing of, 425
see also rules of morphometrics, fourth
Thompson, Sir W., xxvii, 403
time series, patterns of, after an intervention, 4.46
as index of a variable type, 361
see also viremia
total effect, see under multiple regression, as path model
trigonometric functions (sine, cosine), 28, 61–62, 473
tsunami, orphan, see Seattle, earthquakes near
Tuft, E., 81, 253
Tukey, J., 201
formula of, for approximating regression coefficients, 226, 231
twins, identical, see under Weiss
ulcers, 3, 201–205, 211, 491
the main abduction in, 204
two types of graphics for, 4.25
one-sentence summary for, 3
ultrasound, neonatal intracranial, 485–488
“Umpire-bonus model,” 162
see also under Galton, F., quincunx machine of unicorns, and abduction, 210
uniform term, in Procrustes shape space, 418, 7.17, 7.18, 457
see also partial warps
validity and invalidity, see plausible rival hypotheses
variables, structured, varieties of, 360, 372
variance, 132; see also least squares
“explained” and “unexplained,” 222–223
variances of independent processes add, 133
varilocal superpositions, 340
Varmus, H., xxviii, 35–36
Vilmann, H., rodent skull data of, 398–399
see also Bookstein, examples, rodent skull growth
viremia, SIV-related (example of the SVD), 354–357
Visible Female (NIH avatar), hidden consilience in, Pl.2.8, 493
visualization, and numerical inference, see inference, numerical, visualization and
Waals, van der, J., estimates of molecular magnitudes by, 175–176
Wanderer über dem Nebelmeer, Der (painting by C. D. Friedrich), front and back covers, 43, 45, 70, 296, 312–313, 484
as metaphor for multiscale representation of complex processes, 313
warp, see principal warps, partial warps, relative warps
Warren, R., 116
see also under ulcers
water companies of London, see under Snow
Watson, J., 4, 14, 99, 116
see also under double helix
Weaver, W., 302
Wegener, A., 19–22, 42, 491
see also Atlantic Ocean
weighted average, see average, weighted
Weisberg, S., regression textbook of, 169, 220–221, 233, 240
Weiss, P., xxviii, 18, 45, 70–71
Whewell, W., 17
Wigner, E., xxvii, 6, 12, 28, 29, 33, 51, 69, 84, 92, 149, 184–185, 293, 492
Millikan’s study as illustration of, 149–150
Wilkinson skull, see Cromwell
Williams, R., 72
Wilson, E. B., xxi
Wilson, E. O., xxvii, 12–13, 15, 17, 29–37, 405
Wilson, J. T., 22, 2.4, 2.5
wind direction, as a mappable variable, 127, 4.6
<table>
<thead>
<tr>
<th>Index</th>
<th>535</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winn, J., xxiv</td>
<td>Yucatán, see Chicxulub</td>
</tr>
<tr>
<td>Wold, H. and S., 367</td>
<td>Zebra Diagram, 22, 2.3</td>
</tr>
<tr>
<td>Worsley, K., Markov models for images of, 328–330</td>
<td>Ziliak, S., 198–201</td>
</tr>
<tr>
<td>Wright, S., 59, 72, 160, 229, 231, 367</td>
<td>Ziman, J., xxi</td>
</tr>
<tr>
<td>leghorn chicken data, correlation matrix of, 319–320</td>
<td>z-scores (standardized variables), unsuitability for consilient reasoning, 361</td>
</tr>
</tbody>
</table>