
1 Gravitational attraction

1.1 Universal gravitational attraction

In his Principia, which he completed in 1686, Sir Isaac Newton demonstrated the inverse
square law for universal gravitation. This law has provided the mathematical basis for
the study of gravitational attraction among large attracting masses. Newton demonstrated
that the inverse square proportionality for the attractive forces among all matter could be
shown from his second law of motion and Kepler’s third law of planetary motion. This
gravitational force is one of the weakest forces in nature by many orders of magnitude. The
sizes of the masses involved give it importance on Earth and in space. Partly because of
its weakness, physicists today still argue about the role of gravity in relativity and particle
physics, occasionally suggesting that at some scales the inverse square law may break
down. However, for the study of the gravitational attraction of the Earth and its geological
features, Newton’s inverse square law and the larger field of potential theory derived from
it are sufficient.

Newton’s second law relates the force acting on a body to its change in momentum. In
order to demonstrate the inverse square law, one can consider a point mass, m, or planet, in
orbit about a larger mass, m′. The point mass experiences an attractive force pulling it back
toward the larger mass (Figure 1.1). On traveling a short arc distance, c, the planet is pulled
a distance, s, from its straight line path to a position closer to m′. From Newton’s second
law the distance, s, which is the distance a body would move under a constant acceleration,
is given by the relation

s = 1

2
a(δt)2, (1.1)

where a is the acceleration experienced by the planet and δt is the time increment the
planet takes to travel the distance c. The time increment can be eliminated by equating its
fraction of the total period of revolution, T, to the ratio of the small arc distance, c, to the
circumference of the orbit

δt

T
= c

2πR
. (1.2)

Equation (1.2) allows the acceleration to be written in the form

a

2
= s

(
2πR

T c

)2

. (1.3)
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2 Gravitational attraction
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Figure 1.1 Path of particlem in orbit about a large planet of massm’.

By a geometrical proof, Newton showed that c2 = 2Rs for arc distances c much less than
the radius, R, and was able to eliminate both s and c2 in Eq. (1.3). The resulting relation
contains the square of the period of revolution. Kepler’s third law, which is the observation
that the squares of the periods of any two planets are proportional to the cubes of their mean
distances from the Sun, provided the relation needed to demonstrate the inverse square law
of universal gravitational attraction. The proportionality takes the form

a = 2s

(
2πR

T c

)2

≥ 4π2R

T 2
≈ 1

R2
. (1.4)

The constant of proportionality turns out to be proportional to the attracting mass, m′, and,
therefore, can be written Gm′, where G is the universal gravitational constant. The force of
attraction between the two masses is therefore

F = −G
m′m
R2

, (1.5)

where:
F = ma, the magnitude of the force of attraction
G = the universal gravitational constant
m′ = the attracting mass of the Sun
m = the attracted mass of the planet
R = the distance from the center of m to the center of m′

The negative sign designates the force as attractive, toward the center of m′.
The gravitational forces on m and m′ are equal in magnitude, opposite in direction,

and along the line joining the two masses. The force is proportional to the product of the
two masses and inversely proportional to the square of their separation. The value of G
based on early pendulum measurements was (6.67428 ± 0.00067) × 10−11 m3 kg−1 s−2.
The best measurements of G as of 2010 (Mohr, et al., 2011) is (6.67384 ± 0.00080) ×
10−11 m3 kg−1 s−2.

For more than 300 years, Newton’s law has provided the basis for studies of gravitational
attraction, a remarkable record for a relation based on empirical observations. Recent
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3 1.2 Gravitational acceleration
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Figure 1.2 Vector notations for attraction of point masses.

speculations about a fifth force suggest a deviation from the inverse square relation, but
these have proven too small, if they even exist, to be confirmed by measurements. Also,
Einstein’s special relativity added a new dimension to Newtonian space-time that has
changed how physicists perceive gravitation. However, the relativistic deviations from
Newtonian gravitation are too small to have an impact on the measurement of the Earth’s
gravitational attraction because the velocities in the Earth’s system are insignificant relative
to the speed of light. These relativistic effects have only recently become measurable in
satellite data.

1.2 Gravitational acceleration

The acceleration of a small point mass near a much larger attracting mass, such as would
approximate the attraction of satellites orbiting the Earth in space, can be expressed as the
acceleration of a unit mass, m = 1.0. The magnitude, a, of the acceleration of a unit mass is

a = F

m
= −G

m′

r2
. (1.6)

Equation (1.6) gives the gravitational attraction of the larger mass m′. Because the force of
attraction and acceleration are vectors, a general expression with the origin displaced from
the position of the attracting mass is more appropriate and is needed for more complex
computations. The direction vector, l , along which the force acts, is the difference in the
position vectors r and r′ of the two masses (Figure 1.2). The position vectors r and r′ point
from the origin to m and m′, respectively. The gravitational attraction in vector notation
may be expressed as

a = −G
m′(r − r ′)
|r − r ′|3 = −G

m′

|l|2
l
|l| . (1.7)
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4 Gravitational attraction

In Cartesian coordinates, the attracted mass, usually the unit test mass, m, is at the position
(x, y, z), and the attracting mass is at position (ξ , η, ζ ). In applications to the Earth, the
origin is the center of mass of the Earth and the z-axis is the mean axis of rotation. The x-
and y-axes are arbitrary, but x is by convention the meridian plane of Greenwich, England.
This orientation of the reference axes defines the geocentric coordinate system for the Earth.
Expanding Eq. (1.7) in terms of the coordinates of m and m′ gives

[ax, ay, az] = −G
m′ [x − ξ, y − η, z − ζ ](

(x − ξ )2 + (y − η)2 + (z − ζ )2
)3/2

, (1.8)

where in Eq. (1.8), |l| has been replaced by
√

(x − ξ )2 + (y − η)2 + (z − ζ )2. The compo-
nents of the vector, a in the directions of the geocentric coordinated axes are [ax, ay, az].

Equation (1.8) can be modified and simplified for computation of the effects of anomalous
mass near the Earth’s surface. The attraction of the anomalous mass is typically less than
0.001 percent of the attraction of the Earth. Also, the curvature of the Earth’s surface
may be neglected for all but the larger regional surveys. Given the small magnitude of
local anomalies and negligible difference between a flat plane and the survey area for
local surveys, a rectangular coordinate system can be used. The vertical direction is set to
coincide with the direction of the Earth’s gravity field, the direction in which measurements
of the magnitude of the gravity field are determined. The attraction of anomalous mass is
projected onto the vertical direction and two horizontal directions (typically north and east)
for computation. In most gravity measurements for the interpretation of anomalous density
structures near the Earth’s surface, the main portion of the Earth’s field is removed and
only the anomalous component is retained. In Eq. (1.8) the vertical direction corresponds
to the radial or normal direction. For application to the Earth’s surface in local surveys, the
radial direction is usually assigned the z direction in a rectangular coordinate system. The
attraction of anomalous masses at the surface, from Eq. (1.8) is

az = −G
m′(z − ζ )(

(x − ξ )2 + (y − η)2 + (z − ζ )2)3/2
, (1.9)

where the z-axis now refers to the vertical direction which is in line with the negative
direction of the Earth’s gravity field. The ratio of z − ζ to l is the cosine of the angle
between vertical (the z-axis) and the attraction of anomalous mass, and thus for anomalous
mass, Eq. (1.9) is the projection of the attraction of anomalous mass onto the z-, or vertical,
axis.

1.3 Gravitational potential of a point mass

The gravitational vector field can be derived from a potential scalar field because the
gravitational field is conservative. For a conservative vector field, the work required to
move a particle from point A to B is independent of the path (Figure 1.3). The work
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5 1.4 Gravitational potential of a solid body

A B

a

b

ds

Figure 1.3 Work along path from point A to B. A and B are at different potential levels.

required, in the absence of friction, is the integral along the path of the product of force
times the distance moved,

�W = W (B) − W (A) =
B∫

A

F · ds, (1.10)

where the dot product gives the component of the force in the direction of movement given
by ds. If we equate a for a point mass from Eq. (1.7) to F, Eq. (1.10) becomes,

�W = −G

B∫
A

m′l · ds

l3
= −G

B∫
A

m′l cos (θ ) ds

l3
= −G

lB∫
lA

m′dl

l2
= Gm′

(
1

lA
− 1

lB

)
,

(1.11)

where dl is l cos(θ )ds the projection of ds on l. The gravitational potential V is the limit of
�W as lA goes to infinity. The expression for the potential is

V = −G
m′

l
. (1.12)

In practice, the solutions for many gravity problems are easier to solve by using the scalar
potential and computing the gravitational acceleration from the gradient of the potential

a = −∇V. (1.13)

1.4 Gravitational potential of a solid body

The gravitational attraction of a composite body, such as the Earth, is the combination of the
attractions of its countless mass elements. The total attraction is the vector summation of the
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6 Gravitational attraction

accelerations of the individual elements or the gradient of the scalar summation of the
potentials for all the mass elements. The expression for the potential for many point masses
can be written as the sum

V = G
m1

l1
+ G

m2

l2
+ G

m3

l3
+ · · · . (1.14)

By letting the mass elements become smaller and more numerous, the potential for an
anomalous distribution of mass can be approximated to any degree of precision. In the limit
of infinitesimally small mass increments the summation can be replaced by the integral

V = G

∫
dm

l
, (1.15)

where dm is an infinitesimally small mass increment. The density ρ of the medium is
defined as the ratio of the mass to the volume of the mass in the limit as the volume goes
to zero,

ρ = lim
δv→0

m

v
. (1.16)

Density is a scalar function of position in an anomalous mass. The density distribution can
be highly discontinuous and irregular in real materials, and may vary radically across grain
boundaries, in voids, in caverns, and at the surface where rock comes in contact with the
atmosphere. In practice, average or smoothed values of the density distribution are used in
computation. By substituting the expression for dm in terms of density into Eq. (1.15), the
integral expression for the potential is an integral over the volume,

V = G

∫
v

dm

l
= G

∫
v

ρdv

l
. (1.17)

In rectangular coordinates the potential for a solid body from Eq. (1.17) is written as

V (x, y, z) = G

∫
v

ρ (ξ, η, ζ ) dξdηdζ{
(x − ξ )2 + (y − η)2 + (z − ζ )2}1/2

, (1.18)

where dv = dξdηdς .
The gravitational acceleration in the three orthogonal coordinate directions, can be found

by differentiating Eq. (1.18) by x, y, and z, giving, respectively,

ax = ∂V

∂x
= −G

∫∫∫
ρ (ξ, η, ζ ) (x − ξ )dξdηdζ{

(x − ξ )2 + (y − η)2 + (z − ζ )2}3/2
(1.19)

ay = ∂V

∂y
= −G

∫∫∫
ρ (ξ, η, ζ ) (y − η)dξdηdζ{

(x − ξ )2 + (y − η)2 + (z − ζ )2}3/2
(1.20)

az = ∂V

∂z
= −G

∫∫∫
ρ (ξ, η, ζ ) (z − ζ )dξdηdζ{

(x − ξ )2 + (y − η)2 + (z − ζ )2}3/2
. (1.21)

In computing the gravitational attraction, it is often easier to integrate the potential once
and differentiate than it is to solve the integration three times.
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7 1.5 Surface potential

The attraction between two static rigid bodies, each too irregular in shape to assume they
are equivalent to a point mass, requires integrations over the total volume of both masses.
For example, the gravitational attraction in the x direction, for the center of mass of two
irregular bodies is given by the six integrations

ax = G

∫
ξ1

∫
η1

∫
ζ1

∫
ξ2

∫
η2

∫
ζ2

ρ1 (ξ1, η1, ζ1) ρ2 (ξ2, η2, ζ2) (ξ1 − ξ2) dξ1dη1dζ1dξ2dη2dζ2{
(ξ1 − ξ2)2 + (η1 − η2)2 + (ζ1 − ζ2)2}3/2

.

(1.22)

For moving systems the asymmetry of mass can lead to rotational forces, such as those
exerted by the Sun and Moon on the bulge of the rotating Earth. These forces create a
torque that explains the precession of the Earth’s axis of rotation.

1.5 Surface potential

When the distribution of mass is restricted to a thin two-dimensional sheet, it is convenient
to express the equation for the potential as a two-dimensional integral over that surface.
For computation, the thickness is assumed to go to zero and the sheet has a mass density
of κ = dm/ds, defined by the ratio of mass, dm, to surface area, ds. In practice, the sheet
only needs to be thin relative to the distance of the attracted point for the computation to
be useful in modeling. In this case the surface density is the limit as the thickness goes to
zero of the product of density, ρ, and thickness, dh,

κ = dm

ds
∼= ρdh. (1.23)

The integral for the potential can be expressed in various forms, such as

V = G

∫∫
v

∫
dm

l
= G

∫∫
v

∫
ρdv

l
= G

∫∫
v

∫
ρdhds

l
= G

∫∫
v

∫
κds

l
. (1.24)

On the surface, the normal derivatives are discontinuous. They differ according to whether
the derivative is taken from the internal or external side of the surface,

∂V

∂n

∣∣∣∣
e

= −2πGκ + G

∫
σ

∫
κ

∂

∂n

(
1

l

)
dσ (1.25)

∂V

∂n

∣∣∣∣
i

= +2πGκ + G

∫
σ

∫
κ

∂

∂n

(
1

l

)
dσ (1.26)

∂V

∂n

∣∣∣∣
i

− ∂V

∂n

∣∣∣∣
e

= 4πGκ. (1.27)
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8 Gravitational attraction

I

r

r sinθdϕ

ϕ

rdθ
dr

Rθ

Figure 1.4 Coordinate system for computation of the potential for a constant density sphere.

1.6 Attraction of a sphere

The attraction of a sphere of uniform density is, perhaps, the most useful and fundamental
relation for the interpretation of gravity anomalies. It is a first approximation to the attraction
of any compact irregularly shaped body of mass at distances that are greater than the diam-
eter of the body. In order to demonstrate the integration, Eq. (1.18) is expressed in spherical
coordinates in which the incremental volume is r2 sin θdrdθdφ, where the coordinates are
defined in Figure 1.4. The expression for the potential in spherical coordinates is

V = GρV = Gρ

a∫
0

π∫
0

2π∫
0

r2 sin θ

l
drdθdφ. (1.28)

The integration over the shell is computed first. The integration over the longitudinal
coordinate, λ, is trivial because the distance, l does not change with a change in φ, and the
integration simply gives the factor of 2π,

V = 2πGρ

a∫
0

π∫
0

r2sinθ

l
drdθ. (1.29)

The distance l is a function of a, but it can be expressed in spherical coordinates through
the law of cosines for the triangle formed by the origin, the attracted mass and the incre-
mental attracting mass

l2 = r2 + R2 + 2rRcosθ. (1.30)

By differentiating Eq. (1.30) with respect to θ it can be shown that

dl

rR
= sinθ

l
dθ. (1.31)
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9 1.7 Units of acceleration

This relation may be substituted back into Eq. (1.29) to change the variable of integration,

V = 2πGρ

a∫
0

R+r∫
R−r

r2

rR
drdl. (1.32)

Evaluation of the integral for l gives

V = 2πGρ

a∫
0

r2dr

rR
l
∣∣R+r

R−r
= 2πGρ

a∫
0

r2dr

rR
[(R + r) − (R − r)] , (1.33)

or

V = −4πGρ

a∫
0

r2dr

R
= −4π

3
a3Gρ

1

R
. (1.34)

The force of attraction of the sphere in the radial direction is the derivative with respect to
R, or

ax = −∂V

dR
= 4π

3
a3Gρ

2

R2
. (1.35)

This radial direction is referenced to the center of mass of the sphere. The integration has
demonstrated that the attraction of a sphere is equivalent to the attraction from a point at
the center of the sphere with all the mass concentrated at the center.

For a small spherical zone of anomalous density near the Earth’s surface, the anomalous
field due to the sphere will be proportional to the density contrast between the sphere and
the Earth. Because the Earth’s gravity field is on the order of 6 orders of magnitude greater
than anomalous fields, the anomalous attraction of a spherical shaped anomaly can be
measured in the vertical direction. As in Eq. (1.21), the vertical component of the attraction
of a sphere is given by the derivative of Eq. (1.34) with respect to the vertical, z,

az = ∂V

∂z
= 4π

3
a3G�ρ

(z − ζ )[
(x − ξ )2 + (y − η)2 + (z − ζ )2]3/2

. (1.36)

1.7 Units of acceleration

The S.I. units of g are m/s2, although other units are still frequently used. The practical unit
for measurements of variations in the Earth’s gravity is on the order of μm/s2. One μm/s2

corresponds to the “gravity unit” or “g.u.” originally used in oil exploration geophysics.
Although S.I. units are preferred or required by most journals, some recent literature in the
field of geophysics still uses the Gal, one cm/s2, for presentations of gravity data. In these
publications the mGal = 0.001Gal = 10 μm/s2 is the most common unit for contouring
gravity data.
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2 Instruments and data reduction

2.1 The gravitational constant

The gravitational attraction of the Earth according to Newton’s universal law of gravitation
is proportional to the mass of the Earth and inversely proportional to the distance from the
Earth’s center. The constant of proportionality is the universal gravitational constant, G.
In measuring gravitational attraction the mass of any planetary body and G are coupled
and planetary observations cannot be used to determine the independent values of G and
mass. Independent measurements of G and the mass of the Earth, or equivalently its
mean density, have not been easy. The value of G is currently defined to four significant
figures,

G = (6.67384 ± 0.00080) × 10−11 m3 kg−1 s−2, (2.1)

or 10−8 dyne cm2/g2. This most recent value of G is from the 2010 CODATA Recommended
Values for Physical Constants, which were released June 2011 by the National Institute of
Standards and Technology. Physicists still argue about the meaning of gravity and whether
G is truly a constant; but, for the practical study and measurement of the Earth’s shape and
its structures, the implications of these arguments are insignificant.

The first experiment capable of determining the universal gravitational constant was
carried out in 1798 by Cavendish. The Cavendish apparatus, a torsion balance, made use
of the attraction of spheres, where the attraction of a sphere is known to be the same as
the attraction of a point mass at the center of the sphere. A large mass, M in Figure 2.1, is
moved into position and the deflection, ε, of a torsion balance is observed. The small mass
and elastic constant can be expressed in terms of the period of the torsion balance without
the large mass. Using the ratio of the size of the two masses and the attraction of one mass
to the Earth, Cavendish was able to compute the Earth’s mean density. Actual computations
of G came much later from similar measurements. The more accurate recent measurements
determine the period with and without the larger mass. The improvement in the recent
measurements comes from improvements in the ability to measure period more accurately
and from the increased precision in displacement afforded with laser interferometers. Parks
and Faller (2010) used a laser interferometer to measure the change in spacing between two
free-hanging pendulum masses to provide one of the most recent and precise measurements
of G.
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