PRINCIPLES OF FINANCIAL ECONOMICS
Second Edition

This new edition provides a rigorous yet accessible graduate-level introduction to
financial economics. Since students often find the link between financial economics
and equilibrium theory hard to grasp, less attention is given to purely financial top-
ics, such as valuation of derivatives, and more emphasis is placed on making the
connection with equilibrium theory explicit and clear. This book also provides a
detailed study of two-date models because almost all of the key ideas in financial
economics can be developed in the two-date setting. Substantial discussions and
examples are included to make the ideas readily understandable. Several chap-
ters in this new edition have been reordered and revised to deal with portfolio
restrictions sequentially and more clearly, and an extended discussion on portfolio
choice and optimal allocation of risk is available. The most important additions are
new chapters on infinite-time security markets, exploring, among other topics, the
possibility of price bubbles.

Stephen F. LeRoy is Professor of Economics Emeritus at the University of
California, Santa Barbara. Early in his career, he was an economist in the research
departments of the Federal Reserve Bank of Kansas City and the Board of Gover-
nors of the Federal Reserve System. He then moved to the economics department
at the University of California, Santa Barbara. He also served as Carlson Professor
of Finance in the Carlson School of Management, University of Minnesota. He has
had visiting appointments at the University of California, Berkeley; the University
of California, Davis; the California Institute of Technology; and the University of
Chicago. He earned his PhD in economics from the University of Pennsylvania.

Jan Werner is Professor of Economics at the University of Minnesota. He has taught
at the Pompeu Fabra University, Barcelona; the Institute for Advanced Studies in
Vienna; and the Central University of Finance and Economics, Beijing. He has had
visiting appointments at the University of Bonn; the European University Institute,
Florence; and Université Paris Dauphine. He serves on the editorial boards of
Economic Theory, the Journal of Mathematical Economics, the Annals of Finance,
and the Central European Journal of Economic Modeling and Econometrics. He
earned his PhD in economics from the University of Bonn.
PRINCIPLES OF FINANCIAL ECONOMICS

Second Edition

STEPHEN F. LEROY
University of California

JAN WERNER
University of Minnesota
To

Julie and Martyna, for their support and, most of all,

for their patience with what has turned out to be an arduous process.
Contents

<table>
<thead>
<tr>
<th>Preface to the Second Edition</th>
<th>page xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the First Edition</td>
<td>xxi</td>
</tr>
</tbody>
</table>

Part One Equilibrium and Arbitrage

1 Equilibrium in Security Markets
 1.1 Introduction
 1.2 Security Markets
 1.3 Agents
 1.4 Consumption and Portfolio Choice
 1.5 First-Order Conditions
 1.6 Left and Right Inverses of the Payoff Matrix
 1.7 General Equilibrium
 1.8 Existence and Uniqueness of Equilibrium
 1.9 Representative Agent Models
 1.10 Notes
 Bibliography

2 Linear Pricing
 2.1 Introduction
 2.2 The Law of One Price
 2.3 The Payoff Pricing Functional
 2.4 Linear Equilibrium Pricing
 2.5 State Prices in Complete Markets
 2.6 Recasting the Optimization Problem
 2.7 Notes
 Bibliography

3 Arbitrage and Positive Pricing
 3.1 Introduction
 3.2 Arbitrage and Strong Arbitrage

vii
Contents

3.3 Diagrammatic Representation 25
3.4 Positivity of the Payoff Pricing Functional 28
3.5 Positive State Prices 29
3.6 Arbitrage and Optimal Portfolios 29
3.7 Positive Equilibrium Pricing 32
3.8 Notes 32
Bibliography 33

Part Two Valuation

4 Valuation 37
4.1 Introduction 37
4.2 The Fundamental Theorem of Finance 38
4.3 Bounds on the Values of Contingent Claims 39
4.4 The Extension 43
4.5 Uniqueness of the Valuation Functional 45
4.6 Notes 46
Bibliography 46

5 State Prices and Risk-Neutral Probabilities 47
5.1 Introduction 47
5.2 State Prices 47
5.3 Farkas–Stiemke Lemma 50
5.4 Diagrammatic Representation 51
5.5 State Prices and Value Bounds 51
5.6 Risk-Free Payoffs 52
5.7 Risk-Neutral Probabilities 53
5.8 Notes 54
Bibliography 55

Part Three Portfolio Restrictions

6 Portfolio Restrictions 59
6.1 Introduction 59
6.2 Short Sales Restrictions 59
6.3 Portfolio Choice under Short-Sales Restrictions 61
6.4 The Law of One Price 62
6.5 Arbitrage under Short-Sales Restrictions 63
6.6 Diagrammatic Representation 64
6.7 Bid-Ask Spreads 64
6.8 Bid-Ask Spreads in Equilibrium 66
6.9 Notes 68
Bibliography 69
Contents

7 Valuation under Portfolio Restrictions
7.1 Introduction
7.2 Payoff Pricing under Short-Sales Restrictions
7.3 State Prices under Short-Sales Restrictions
7.4 Diagrammatic Representation
7.5 Bid-Ask Spreads
7.6 Notes
Bibliography

Stephen F. Leroy and Jan Werner
Frontmatter
More information

Part Four Risk

8 Expected Utility
8.1 Introduction
8.2 Expected Utility
8.3 Von Neumann–Morgenstern Expected Utility Theory
8.4 Savage’s Expected Utility Theory
8.5 State-Separable Utility Representation
8.6 Risk Aversion and Expected Utility Representation
8.7 Ellsberg Paradox
8.8 Multiple-Prior Expected Utility
8.9 Expected Utility with Two-Date Consumption
8.10 Notes
Bibliography

9 Risk Aversion
9.1 Introduction
9.2 Risk Aversion and Risk Neutrality
9.3 Risk Aversion and Concavity
9.4 Arrow–Pratt Measures of Absolute Risk Aversion
9.5 Risk Compensation
9.6 The Pratt Theorem
9.7 Decreasing, Constant, and Increasing Risk Aversion
9.8 Relative Risk Aversion
9.9 Utility Functions with Linear Risk Tolerance
9.10 Risk Aversion for Multiple-Prior Expected Utility
9.11 Risk Aversion with Two-Date Consumption
9.12 Notes
Bibliography

10 Risk
10.1 Introduction
10.2 Greater Risk
10.3 Uncorrelatedness, Mean Independence, and Independence
10.4 A Property of Mean Independence
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5 Risk and Risk Aversion</td>
<td>111</td>
</tr>
<tr>
<td>10.6 Greater Risk and Variance</td>
<td>114</td>
</tr>
<tr>
<td>10.7 A Characterization of Greater Risk</td>
<td>115</td>
</tr>
<tr>
<td>10.8 Notes</td>
<td>118</td>
</tr>
<tr>
<td>Bibliography</td>
<td>118</td>
</tr>
</tbody>
</table>

Part Five Optimal Portfolios

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Optimal Portfolios with One Risky Security</td>
<td>123</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>123</td>
</tr>
<tr>
<td>11.2 Portfolio Choice and Wealth</td>
<td>123</td>
</tr>
<tr>
<td>11.3 Optimal Portfolios with One Risky Security</td>
<td>125</td>
</tr>
<tr>
<td>11.4 Mean-Variance Optimal Portfolios</td>
<td>126</td>
</tr>
<tr>
<td>11.5 Risk Premium and Optimal Portfolios</td>
<td>127</td>
</tr>
<tr>
<td>11.6 Optimal Portfolios When the Risk Premium Is Small</td>
<td>129</td>
</tr>
<tr>
<td>11.7 Optimal Portfolios for Multiple-Prior Expected Utility</td>
<td>130</td>
</tr>
<tr>
<td>11.8 Notes</td>
<td>131</td>
</tr>
<tr>
<td>Bibliography</td>
<td>132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Comparative Statics of Optimal Portfolios</td>
<td>133</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>133</td>
</tr>
<tr>
<td>12.2 Wealth</td>
<td>133</td>
</tr>
<tr>
<td>12.3 Expected Return</td>
<td>135</td>
</tr>
<tr>
<td>12.4 Risk</td>
<td>137</td>
</tr>
<tr>
<td>12.5 Optimal Portfolios with Two-Date Consumption</td>
<td>138</td>
</tr>
<tr>
<td>12.6 Notes</td>
<td>141</td>
</tr>
<tr>
<td>Bibliography</td>
<td>141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Optimal Portfolios with Several Risky Securities</td>
<td>143</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>143</td>
</tr>
<tr>
<td>13.2 Risk–Return Tradeoff</td>
<td>143</td>
</tr>
<tr>
<td>13.3 Optimal Portfolios under Fair Pricing</td>
<td>144</td>
</tr>
<tr>
<td>13.4 Risk Premia and Optimal Portfolios</td>
<td>145</td>
</tr>
<tr>
<td>13.5 Optimal Portfolios under Linear Risk Tolerance</td>
<td>148</td>
</tr>
<tr>
<td>13.6 Optimal Portfolios with Two-Date Consumption</td>
<td>150</td>
</tr>
<tr>
<td>13.7 Notes</td>
<td>151</td>
</tr>
<tr>
<td>Bibliography</td>
<td>151</td>
</tr>
</tbody>
</table>

Part Six Equilibrium Prices and Allocations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Consumption-Based Security Pricing</td>
<td>155</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>155</td>
</tr>
<tr>
<td>14.2 Risk-Free Return in Equilibrium</td>
<td>155</td>
</tr>
<tr>
<td>14.3 Expected Returns in Equilibrium</td>
<td>156</td>
</tr>
<tr>
<td>14.4 Equilibrium Consumption and Expected Returns</td>
<td>157</td>
</tr>
<tr>
<td>14.5 Volatility of Marginal Rates of Substitution</td>
<td>159</td>
</tr>
</tbody>
</table>
Contents

14.6 A First Pass at the CAPM 161
14.7 Notes 162
Bibliography 162
15 Complete Markets and Pareto-Optimal Allocations of Risk 164
15.1 Introduction 164
15.2 Pareto-Optimal Allocations 164
15.3 Pareto-Optimal Equilibria in Complete Markets 166
15.4 Complete Markets and Options 167
15.5 Pareto-Optimal Allocations under Expected Utility 168
15.6 Equilibrium Expected Returns in Complete Markets 172
15.7 Pareto-Optimal Allocations under Linear Risk Tolerance 172
15.8 Pareto-Optimal Allocations under Multiple-Prior Expected Utility 174
15.9 Notes 175
Bibliography 175
16 Optimality in Incomplete Markets 177
16.1 Introduction 177
16.2 Constrained Optimality 177
16.3 Effectively Complete Markets 178
16.4 Equilibria in Effectively Complete Markets 180
16.5 Effectively Complete Markets with No Aggregate Risk 182
16.6 Effectively Complete Markets with Options 183
16.7 Effectively Complete Markets with Linear Risk Tolerance 184
16.8 Representative Agent under Linear Risk Tolerance 187
16.9 Multifund Spanning 189
16.10 A Second Pass at the CAPM 189
16.11 Notes 190
Bibliography 191

Part Seven Mean-Variance Analysis
17 The Expectations and Pricing Kernels 195
17.1 Introduction 195
17.2 Hilbert Spaces and Inner Products 196
17.3 The Expectations Inner Product 196
17.4 Orthogonal Vectors 197
17.5 Orthogonal Projections 198
17.6 Diagrammatic Methods in Hilbert Spaces 199
17.7 Riesz Representation Theorem 200
17.8 Construction of the Riesz Kernel 201
17.9 The Expectations Kernel 202
Contents

17.10 The Pricing Kernel 204
17.11 Notes 205
Bibliography 206

18 The Mean-Variance Frontier Payoffs 207
18.1 Introduction 207
18.2 Mean-Variance Frontier Payoffs 207
18.3 Frontier Returns 208
18.4 Zero-Covariance Frontier Returns 213
18.5 Beta Pricing 214
18.6 Mean-Variance Efficient Returns 215
18.7 Volatility of Marginal Rates of Substitution 216
18.8 Notes 217
Bibliography 218

19 Capital Asset Pricing Model 219
19.1 Introduction 219
19.2 Security Market Line 220
19.3 Mean-Variance Preferences 222
19.4 Equilibrium Portfolios under Mean-Variance Preferences 224
19.5 Quadratic Utilities 225
19.6 Normally Distributed Payoffs 226
19.7 Notes 227
Bibliography 228

20 Factor Pricing 229
20.1 Introduction 229
20.2 Exact Factor Pricing 229
20.3 Exact Factor Pricing, Beta Pricing, and the CAPM 232
20.4 Factor Pricing Errors 233
20.5 Factor Structure 234
20.6 Mean-Independent Factor Structure 236
20.7 Options as Factors 238
20.8 Notes 239
Bibliography 241

Part Eight Multidate Security Markets

21 Equilibrium in Multidate Security Markets 245
21.1 Introduction 245
21.2 Uncertainty and Information 245
21.3 Multidate Security Markets 248
21.4 The Asset Span 249
21.5 Agents 250
21.6 Portfolio Choice and the First-Order Conditions 250

Contents

21.7 General Equilibrium 251
21.8 Notes 252
Bibliography 253

22 Multidate Arbitrage and Positivity 254
22.1 Introduction 254
22.2 Law of One Price and Linearity 254
22.3 Arbitrage and Positive Pricing 255
22.4 One-Period Arbitrage 256
22.5 Positive Equilibrium Pricing 256
22.6 Notes 258
Bibliography 258

23 Dynamically Complete Markets 259
23.1 Introduction 259
23.2 Dynamically Complete Markets 259
23.3 Binomial Security Markets 260
23.4 Event Prices in Dynamically Complete Markets 261
23.5 Event Prices in Binomial Security Markets 262
23.6 Equilibrium in Dynamically Complete Markets 263
23.7 Pareto-Optimal Equilibria 264
23.8 Notes 265
Bibliography 265

24 Valuation 267
24.1 Introduction 267
24.2 The Fundamental Theorem of Finance 267
24.3 Uniqueness of the Valuation Functional 270
24.4 Notes 270
Bibliography 270

Part Nine Martingale Property of Security Prices

25 Event Prices, Risk-Neutral Probabilities, and the Pricing Kernel 273
25.1 Introduction 273
25.2 Event Prices 273
25.3 Security Prices and Values of Dividends 276
25.4 Risk-Free Return and Discount Factors 276
25.5 Risk-Neutral Probabilities 277
25.6 Expected Returns under Risk-Neutral Probabilities 279
25.7 Risk-Neutral Valuation 280
25.8 Value Bounds 281
25.9 The Pricing Kernel 282
25.10 Notes 283
Bibliography 284
Contents

26 Martingale Property of Gains 285
 26.1 Introduction 285
 26.2 Gain and Discounted Gain 285
 26.3 Martingale Property of Discounted Gains 287
 26.4 Martingale Property of Gains 288
 26.5 Gains on Self-Financing Portfolio Strategies 288
 26.6 Notes 289
Bibliography 289

27 Conditional Consumption-Based Security Pricing 291
 27.1 Introduction 291
 27.2 Expected Utility 291
 27.3 Risk Aversion 292
 27.4 Conditional Covariance and Variance 293
 27.5 Conditional Consumption-Based Security Pricing 293
 27.6 Security Pricing under Time Separability 295
 27.7 Volatility of Intertemporal Marginal Rates of Substitution 296
 27.8 Notes 297
Bibliography 297

28 Conditional Beta Pricing and the CAPM 299
 28.1 Introduction 299
 28.2 Two-Date Security Markets at a Date-t Event 300
 28.3 One-Period Pricing and Expectations Kernels 301
 28.4 Conditional Beta Pricing 302
 28.5 Conditional Beta Pricing with Quadratic Utilities 303
 28.6 Multidate Market Return and the CAPM 304
 28.7 Conditional Beta Pricing in Incomplete Markets 306
 28.8 Notes 306
Bibliography 306

Part Ten Infinite-Time Security Markets
29 Equilibrium in Infinite-Time Security Markets 311
 29.1 Introduction 311
 29.2 Infinite-Time Security Markets 311
 29.3 Infinitely Lived Agents 312
 29.4 Ponzi Schemes and Portfolio Constraints 313
 29.5 Portfolio Choice and the First-Order Conditions 314
 29.6 Equilibrium under Debt Constraints 315
 29.7 Notes 315
Bibliography 316

30 Arbitrage, Valuation, and Price Bubbles 318
 30.1 Introduction 318
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.2 Arbitrage under Debt Constraints</td>
<td>318</td>
</tr>
<tr>
<td>30.3 Event Prices</td>
<td>320</td>
</tr>
<tr>
<td>30.4 Security Prices and Valuation of Dividends</td>
<td>321</td>
</tr>
<tr>
<td>30.5 Security Price Bubbles</td>
<td>322</td>
</tr>
<tr>
<td>30.6 Equilibrium Price Bubbles</td>
<td>323</td>
</tr>
<tr>
<td>30.7 Notes</td>
<td>327</td>
</tr>
<tr>
<td>Bibliography</td>
<td>328</td>
</tr>
<tr>
<td>31 Arrow–Debreu Equilibrium in Infinite Time</td>
<td>329</td>
</tr>
<tr>
<td>31.1 Introduction</td>
<td>329</td>
</tr>
<tr>
<td>31.2 Contingent Commodity Markets</td>
<td>329</td>
</tr>
<tr>
<td>31.3 Arrow–Debreu Equilibrium and Pareto-Optimal Allocations</td>
<td>331</td>
</tr>
<tr>
<td>31.5 Equilibrium in Representative-Agent Economies</td>
<td>334</td>
</tr>
<tr>
<td>31.6 Pricing without Countable Additivity</td>
<td>335</td>
</tr>
<tr>
<td>31.7 Notes</td>
<td>336</td>
</tr>
<tr>
<td>Bibliography</td>
<td>338</td>
</tr>
<tr>
<td>Index</td>
<td>339</td>
</tr>
</tbody>
</table>
Preface to the Second Edition

More than a decade has passed since the publication of the first edition of this book. We are pleased by the reaction the book has received. Although it has not displaced John Grisham on booksellers’ shelves, it has been adopted as a text in some leading economics departments, both in the US and abroad. We are also pleased that it is being used in finance classes in business schools.

As anyone who has spent the last decade on this planet knows, financial markets have in the past several years undergone the most severe convulsions since the Great Depression. Almost none of the major events that have occurred in financial markets – the boom and bust of subprime mortgage lending, the spread of the financial crisis from the US to the rest of the world, the transition from a liquidation in financial markets to a severe recession in the world economy – can be treated as a direct application of the ideas presented in this book. But it was never our intention to present all the theoretical tools used in applied work in finance – rather, the goal was to provide a highly stylized version of only the most basic ideas. As observed in the preface to the first edition of this book, this lack of direct descriptive realism does not mean that this material is useless. In evaluating financial markets as they exist it is useful to have a clear idea of the function that they serve when they are working well. This we have tried to provide.

In another sense, however, the discussion in our first edition preface was wide off the mark. We questioned whether financial markets are as important to the overall functioning of the economy as the astronomical volume of trade in derivatives suggests. The jury is in: contrary to the implication of our discussion, they are. It is true, as we noted, that the practice of treating derivatives as redundant assets suggests the opposite conclusion. However, the lethal effects of the financial crisis on the general economy made clear that one can make a case for one-way causation from the real economy to financial markets only by ignoring the frictions and incentive problems that are seen everywhere in financial markets.
One of the few benefits of the financial crisis is that it led financial economists and macroeconomists to accelerate their attempts to integrate their two fields and to incorporate incentive problems and frictions in their analysis. This work is still at an early stage, as witnessed by the general failure of our profession – with the exception of a few – to grasp what was happening in the economy in the years before the crisis and to press for preventive measures.

A number of valuable introductions to financial economics have been published in the last decade. New books that have an orientation similar to ours are Skiadas [8], Back [1], Ross [6], and Lengwiler [5]. Books that provide somewhat different coverage are Cochrane [3], on theoretical and empirical aspects of asset pricing; Singleton [7], on econometric testing of dynamic asset pricing models; Cvitanic and Zapatero [4], on valuation of derivative securities by arbitrage oriented toward finance specialists; and Björk [2], on the theory of arbitrage pricing of financial derivatives in continuous-time models.

We continue to believe that there is a place for our book on the preceding distinguished list. Unlike some of the books listed, our emphasis is on linking financial economics with general equilibrium theory rather than considering financial markets in isolation. Unlike the best recent research work, however, we continue to ignore frictions – except for portfolio restrictions, which we extensively discuss in two-date and infinite-time models – and incentive problems, despite their unquestioned importance. Our justification, as stated in the preface to the first edition, continues to be that the functioning of financial markets in the presence of incentive problems and frictions is best studied after gaining a solid understanding of how financial markets would work in their absence.

We did not find many outright errors in the first edition of our book, either typographical or conceptual. However, there were some of each. These we have corrected. More important, we identified and acted on a number of opportunities to simplify and extend the discussion. We slightly changed the organization of the book so that Chapters 6 and 7 on security markets with portfolio restrictions form the new Part Three. We extensively revised Chapter 8, providing a new axiomatization of expected utility representation of preferences that relies on the condition of risk aversion. We included a discussion of the important Ellsberg paradox that is often taken as evidence for ambiguity aversion. We expanded the presentation of multiple-prior (or maxmin) expected utilities – a class of preferences motivated by the Ellsberg paradox and exhibiting aversion to ambiguity. Some results on portfolio choice and optimal allocations of risk for multiple-prior expected utilities were added in Chapters 11 and 15. Further, we revised and expanded the discussion of co-monotonicity of optimal allocations of risk and its implications for security pricing in Chapters 14 and 15. Chapter 28 was extensively revised, too.
Preface to the Second Edition

The most important addition to the book in this edition is the new Part Ten on infinite-time security markets. It consists of three chapters that explore the consequences of assuming that time is infinite. The presentation of the infinite-time model parallels as much as possible our treatment of two-date and multidate models in earlier chapters. A new issue arising in infinite-time markets is the possibility of price bubbles where the price of a security is different from the present value of its dividends. We explore whether price bubbles can exist in equilibrium in infinite-time security markets. The goal of Part Ten is mostly to give the reader an appreciation of the consequences of the assumption of a finite time horizon adopted in the earlier chapters, not to provide a complete analysis of dynamic infinite-time models.

We owe a great debt to our editor at Cambridge University Press, Scott Parris. He supported us at every stage of the preparation of this book, even when we felt overwhelmed by the project. When it appeared that the first edition of this book was going to be (moderately) successful, he suggested that we prepare a second edition. We agreed right away, but a number of years passed before we actually got to work. We imagine that this is not the first time he has had this experience with his authors. In any case, he kept gently reminding us that he hoped we would get to work, as we eventually did.

Bibliography

Preface to the First Edition

Financial economics plays a far more prominent role in the training of economists than it did even a few years ago. This change is generally attributed to the parallel transformation in financial markets that has occurred in recent years. Assets worth trillions of dollars are traded daily in markets for derivative securities, such as options and futures, that hardly existed a decade ago. However, the importance of these changes is less obvious than the changes themselves. Insofar as derivative securities can be valued by arbitrage, such securities only duplicate primary securities. For example, to the extent that the assumptions underlying the Black–Scholes model of option pricing (or any of its more recent extensions) are accurate, the entire options market is redundant because by assumption the payoff of an option can be duplicated using stocks and bonds. The same argument applies to other derivative securities markets. Thus it is arguable that the variables that matter most – consumption allocations – are not greatly affected by the change in financial markets. Along these lines one would no more infer the importance of financial markets from their volume of trade than one would make a similar argument for supermarket clerks or bank tellers based on the fact that they handle large quantities of cash.

In questioning the appropriateness of correlating the expanding role of finance theory to the explosion in derivatives trading, we are in the same position as the physicist who demurs when journalists express the opinion that Einstein’s theories are important because they led to the development of television. Similarly, in his appraisal of John Nash’s contributions to economic theory, Myerson [13] protested the tendency of journalists to point to the FCC bandwidth auctions as indicating the importance of Nash’s work. At least to those curious about the physical and social sciences, Einstein’s and Nash’s work has a deeper importance than television and the FCC auctions! The same is true of finance theory: its increasing prominence has little to do with the expansion of derivatives markets, which, in any case, owes more to developments in telecommunications and computing than to finance theory.
A more plausible explanation for the expanded role of financial economics is found in the rapid development of the field itself. A generation ago, finance theory was little more than institutional description combined with practitioner-generated rules of thumb that had little analytical basis and, for that matter, little validity. Financial economists agreed that, in principle, security prices ought to be amenable to analysis using serious economic theory. In practice, however, most did not devote much effort to developing economics in this direction.

Today, in contrast, financial economics is increasingly occupying center stage in the economic analysis of problems that involve both time and uncertainty. Many of the problems formerly studied using nonfinance methods now are seen as finance topics. The term “structure of interest rates” is a good example: formerly this was a topic in monetary economics; now it is a topic in finance. There can be little doubt that the quality of the analysis has improved immensely as a result of this change. Increasingly finance methods are used to analyze problems beyond those involving securities prices or portfolio selection, particularly when these involve both time and uncertainty. An example is the real options literature, in which finance tools initially developed for the analysis of options are applied to areas like environmental economics. Such areas do not deal with options per se, but do involve problems to which the idea of an option is very much relevant.

Financial economics lies at the intersection of finance and economics. The two disciplines are different culturally, more so than one would expect given their substantive similarity. Partly this reflects the fact that finance departments are in business schools and are oriented toward finance practitioners, whereas economics departments typically are in liberal arts divisions of colleges and universities and usually are not oriented toward any single nonacademic community. From the perspective of economists starting out in finance, the most important difference is that finance scholars typically use continuous-time models, whereas economists use discrete-time models. Students notice that continuous-time finance is much more difficult mathematically than discrete-time finance, leading them to ask why finance scholars prefer it. The question is seldom discussed. Certainly product differentiation is part of the explanation, and the possibility that entry deterrence plays a role cannot be dismissed. However, for the most part the preference of finance scholars for continuous-time methods is because the problems most distinctively financial rather than economic – valuation of derivative securities, for example – are best handled using continuous-time methods. The technical reason relates to the effect of risk aversion on equilibrium security prices in models of financial markets. In many settings risk aversion is most conveniently handled by imposing a certain distortion on the probability measure used to value payoffs. Under very weak restrictions, in continuous time the distortion affects the drifts of the stochastic processes characterizing the evolution of security prices, but not their volatilities.
Preface to the First Edition

(Girsanov’s theorem). This is evident in the derivation of the Black-Scholes option pricing formula.

In contrast, it is easy to show using examples that in discrete-time models distorting the underlying measure affects volatilities as well as drifts. Furthermore, given that the effect disappears in continuous time, the effect in discrete time is second order in the length-of-time interval. The presence of these higher-order terms often makes the discrete-time versions of valuation problems intractable. It is far easier to perform the underlying analysis in continuous time, even when one must ultimately discretize the resulting partial differential equations in order to obtain numerical solutions. For serious students of finance, the conclusion from this is that there is no escape from learning continuous-time methods, however difficult they may be.

Despite this, the appropriate place to begin is with discrete-time and discrete-state models – the maintained framework in this book – where the economic ideas can be discussed in a setting that requires mathematical methods that are standard in economic theory. For most of this book (Parts One to Seven) we assume that there is one time interval (two dates) and a single consumption good. This setting is most suitable for the study of the relation between risk and return on securities and the role of securities in allocation of risk. In the remaining parts (Parts Eight and Nine), we assume that there are multiple dates (a finite number). The multidate model allows for gradual resolution of uncertainty and retriming of securities as new information becomes available.

A little more than 10 years ago the beginning student in doctoral-level financial economics had no alternative but to read journal articles. There are several obvious disadvantages to such sources. The ideas are not presented systematically, so that authors typically presuppose, often unrealistically, that the reader already understands prior material. Alternatively, familiar material may be reviewed, often in painful detail. Furthermore, typically notation varies from one article to the next. The inefficiency of this process is evident.

Now the situation is the reverse: there are about a dozen excellent books that can serve as texts in introductory courses in financial economics. Books that have an orientation similar to ours include Krouse [9], Milne [12], Ingersoll [8], Huang and Litzenberger [5], Pliska [16], and Ohlson [15]. Books that are oriented more toward finance specialists, and therefore include more material on valuation by arbitrage and less material on equilibrium considerations, include Baxter and Rennie [1], Hull [7], Dothan [3], Wilmott, Howison, and DeWynne [18], Nielsen [14], and Shiryaev [17]. Of these, Hull emphasizes the practical use of continuous-finance tools rather than their mathematical justification. Wilmott, Howison, and DeWynne approach continuous-time finance via partial differential equations rather than through risk-neutral probabilities, which has some advantages and some disadvantages. Baxter
and Rennie give an excellent intuitive presentation of the mathematical ideas of continuous-time finance but do not discuss the economic ideas at length. Campbell, Lo, and MacKinlay [2] stress empirical and econometric issues. The most authoritative text is Duffie [4]. However, because Duffie presumes a very thorough mathematical preparation, that source may not be the place to begin.

Several excellent books exist on subjects closely related to financial economics such as the introductions to the economics of uncertainty by Laffont [10] and Hirshleifer and Riley [6]. Magill and Quinzii [11] is a fine exposition of the economics of incomplete markets in a more general setting than that adopted here.

Our opinion is that none of the finance books cited above adequately emphasizes the connection between financial economics and general equilibrium theory or sets out the major ideas in the simplest and most direct way possible. We attempt to do so. However, we understand that some readers have a different orientation. For example, finance practitioners often have little interest in making the connection between security pricing and general equilibrium and therefore want to proceed to continuous-time finance by the most direct route possible. Such readers might do better to begin with studies other than ours.

This book is based on material used in the introductory finance field sequence in the economics departments of the University of California, Santa Barbara; the University of Minnesota; and the Carlson School of Management at the University of Minnesota. The second author has also taught material from this book at Pompeu Fabra University and the University of Bonn. At the University of Minnesota the book is now the basis for a two-semester sequence, and at the University of California, Santa Barbara, it is the basis for a one-quarter course. In a one-quarter course it is unrealistic to expect that students will master the material; rather, the intention is to introduce the major ideas at an intuitive level. Students writing dissertations in finance typically sit in on the course again in years following the year they take it for credit, at which time they digest the material more thoroughly. It is not obvious which method of instruction is more efficient.

Our students have had good preparation in doctoral-level microeconomics but have not had enough experience with economics to have developed strong intuitions about how economic models work. Typically they have had no previous exposure to finance or the economics of uncertainty. When that has been the case we have encouraged them to read undergraduate-level finance texts and the introductions to the economics of uncertainty cited above. Rather than emphasizing technique, we have tried to discuss results so as to enable students to develop intuition.

After some hesitation we decided to adopt a theorem-proof expository style. A less formal writing style might make the book more readable, but it would also make it more difficult for us to achieve the level of analytical precision that we believe is appropriate in a book such as this. We have provided examples wherever
Preface to the First Edition

appropriate. However, readers will find that they will assimilate the material best if they make up their own examples. The simple models we consider lend themselves well to numerical solution using Mathematica or Mathcad. Although not strictly necessary, it is a good idea for readers to develop facility with methods for numerical solution of these models.

We are painfully aware that the placid financial markets modeled in these pages bear little resemblance to the turbulent markets one reads about in the Wall Street Journal. Furthermore, attempts to test empirically the models described in these pages have not had favorable outcomes. There is no doubt that much is missing from these models; the question is how to improve them. There is little consensus on the best method, so we restrict our attention to relatively elementary and noncontroversial material. We believe that when improved models come along, the themes discussed here – allocation and pricing of risk – will still play a central role. We hope that readers of this volume will be in a good position to develop these improved models.

We wish to acknowledge conversations about these ideas with many of our colleagues at the University of California, Santa Barbara, and the University of Minnesota. Jack Kareken read successive drafts of parts of this book and made many valuable comments. The book has benefited enormously from his attention. However, we do not entertain any illusions that he believes our writing is as clear as it could and should be. Our greatest debt is to several generations of PhD students at the University of California, Santa Barbara, and the University of Minnesota. Comments from Alexandre Baptista have been particularly helpful. Students assure us that they enjoy the material and think they benefit from it. Remarkably, the assurances continue even after grades have been recorded and dissertations signed. Our students have repeatedly and with evident pleasure accepted our invitations to point out errors in the text. We are grateful for these corrections. Several ex-students, we are pleased to report, have gone on to make independent contributions to the body of material introduced here. Our hope and expectation is that this book will enable others whom we have not taught to do the same.

Bibliography

Preface to the First Edition

