Contents

Tables page xvii
Preface xxi
Nomenclature xxiii
Technology Warning xxvii

1 Prolegomena .. 1
 1.1 Performance Parameters 2
 1.2 Flight Optimisation 4
 1.3 Certificate of Airworthiness 4
 1.4 The Need for Upgrading 6
 1.5 Military Aircraft Requirements 7
 1.6 Review of Comprehensive Performance Programs 9
 1.7 The Scope of This Book 10
 1.8 Comprehensive Programs in This Book 13
 Bibliography 14

2 Aircraft Models .. 16
 2.1 Model for Transport Aircraft 16
 2.2 Wire-Frame Definitions 20
 2.2.1 Stochastic Method for Reference Areas 21
 2.3 Wing Sections 23
 2.4 Wetted Areas 24
 2.4.1 Lifting Surfaces 24
 2.4.2 Fuselage 25
 2.4.3 Nacelles and Pylons 28
 2.4.4 Winglets 29
 2.4.5 Flaps, Slats and Other Control Surfaces 30
 2.4.6 Model Verification: Cross-Sectional Area 30
 2.5 Aircraft Volumes 31
 2.5.1 Case Study: Do Aircraft Sink or Float on Water? 32
 2.5.2 Wing Fuel Tanks 33
 2.6 Mean Aerodynamic Chord 34
2.7 Geometry Model Verification 35
 2.7.1 Case Study: Wetted Areas of Transport Aircraft 36
2.8 Reference Systems 37
 2.8.1 Angular Relationships 40
 2.8.2 Definition of the Aircraft State 41
 Summary 41
 Bibliography 42
 Nomenclature for Chapter 2 42

3 Weight and Balance Performance 45
 3.1 A Question of Size 45
 3.2 Design and Operational Weights 47
 3.3 Weight Management 51
 3.4 Determination of Operational Limits 52
 3.5 Centre of Gravity Envelopes 53
 3.5.1 CG Travel during Refuelling 54
 3.5.2 CG Travel in Flight 55
 3.5.3 Design Limits on CG Position 57
 3.5.4 Determination of the Zero-Fuel CG Limit 59
 3.5.5 Influence of CG Position on Performance 59
 3.6 Operational Moments 60
 3.7 Use of Wing Tanks 61
 3.8 Mass and Structural Properties 62
 3.8.1 Mass Distribution 64
 3.8.2 Centre of Gravity 68
 3.8.3 Moments of Inertia 68
 3.8.4 Case Study: Moments of Inertia 73
 Summary 75
 Bibliography 75
 Nomenclature for Chapter 3 76

4 Aerodynamic Performance 78
 4.1 Aircraft Lift 78
 4.1.1 Calculation of Wing Lift 79
 4.1.2 Wing Lift during a Ground Run 79
 4.1.3 Lift Augmentation 81
 4.1.4 Maximum Lift Coefficient 84
 4.2 Aircraft Drag 85
 4.2.1 Lift-Induced Drag 85
 4.2.2 Profile Drag 87
 4.2.3 Wave Drag 93
 4.2.4 Interference Drag 94
 4.2.5 Drag of the Control Surfaces 95
 4.2.6 Landing-Gear Drag 96
 4.2.7 Environmental Effects 100
 4.2.8 Other Drag Components 102
Contents

4.2.9 Case Study: Aerodynamics of the F4 Wind-Tunnel Model 102
4.2.10 Case Study: Drag Analysis of the Transport Aircraft 103
4.2.11 Case Study: Drag Analysis of the ATR72-500 104
4.2.12 Case Study: Drag Analysis of the Airbus A380-861 104
4.3 Transonic Airfoil Model 105
4.4 Aircraft Drag at Transonic and Supersonic Speeds 108
4.4.1 Drag of Bodies of Revolution 110
4.5 Buffet Boundaries 113
4.6 Aerodynamic Derivatives 114
4.7 Float-Plane’s Hull Resistance in Water 115
4.8 Vortex Wakes 116
Summary 118
Bibliography 118
Nomenclature for Chapter 4 121

5 Engine Performance ... 126
5.1 Gas Turbine Engines 126
5.2 Thrust and Power Ratings 128
5.2.1 Engine Derating 129
5.2.2 Transient Response 130
5.3 Turbofan Engine Model 130
5.3.1 Aero-Thermodynamic Model 132
5.3.2 Determination of Design Point 133
5.3.3 Case Study: General Electric CF6-80C2 134
5.3.4 Rubber Engines 137
5.3.5 Effects of Contamination 138
5.3.6 Performance Deterioration 139
5.3.7 Data Handling 140
5.4 Turboprop Engines 141
5.4.1 Case Study: Turboprop PW127M 143
5.5 Turbojet with After-Burning 143
5.6 Generalised Engine Performance 145
5.7 Auxiliary Power Unit 147
5.7.1 Case Study: Honeywell RE-220 APU 149
Summary 149
Bibliography 150
Nomenclature for Chapter 5 150

6 Propeller Performance ... 152
6.1 Propeller Definitions 152
6.1.1 Propeller Limitations 156
6.2 Propulsion Models 156
6.2.1 Axial Momentum Theory 157
6.2.2 The Blade Element Method 160
6.2.3 Propeller in Non-Axial Flight 163
6.2.4 Case Study: Hamilton-Sundstrand F568 Propeller 165
Contents

6.3 Flight Mechanics Integration 168
 6.3.1 Propeller’s Rotational Speed 171

6.4 Propeller Installation Effects 173
 6.4.1 Gearbox Effects 175

Summary 175

Bibliography 176
Nomenclature for Chapter 6 176

7 **Airplane Trim** .. 179

7.1 Longitudinal Trim at Cruise Conditions 179
 7.1.1 Trim Drag 183
 7.1.2 Solution of the Static Longitudinal Trim 183
 7.1.3 Stick-Free Longitudinal Trim 184

7.2 Airplane Control under Thrust Asymmetry 186
 7.2.1 Dihedral Effect 186

Summary 192
Bibliography 192
Nomenclature for Chapter 7 192

8 **Flight Envelopes** ... 195

8.1 The Atmosphere 195
 8.1.1 International Standard Atmosphere 195
 8.1.2 Other Atmosphere Models 198

8.2 Operating Speeds 203
8.3 Design Speeds 206
8.4 Optimum Level Flight Speeds 208
8.5 Ceiling Performance 210
 8.5.1 Pressure Effects on Human Body 210
 8.5.2 Cabin Pressurisation 211

8.6 Flight Envelopes 211
 8.6.1 Calculation of Flight Envelopes 213
 8.6.2 Case Study: Flight Envelopes of the A320 and G550 215

8.7 Supersonic Flight 216
 8.7.1 Supersonic Dash 216
 8.7.2 Supersonic Acceleration 217
 8.7.3 Supersonic Flight Envelopes 218

Summary 220
Bibliography 220
Nomenclature for Chapter 8 221

9 **Take-Off and Field Performance** 224

9.1 Take-Off of Transport-Type Airplane 224
9.2 Take-Off Equations: Jet Airplane 228
 9.2.1 Ground Run 229
 9.2.2 Rolling Coefficients 231
Contents

9.3 Solution of the Take-Off Equations 232
 9.3.1 Case Study: Normal Take-Off of an Airbus A300-600 Model 234
 9.3.2 Effect of the CG Position on Take-Off 236
 9.3.3 Effect of Shock Absorbers 236

9.4 Take-Off with One Engine Inoperative 238
 9.4.1 Decelerate-Stop 239
 9.4.2 Accelerate-Stop 240

9.5 Take-Off of Propeller Aircraft 242

9.6 Minimum Control Speed 245

9.7 Aircraft Braking Concepts 248

9.8 Performance on Contaminated Runways 250
 9.8.1 Contamination Drag 251
 9.8.2 Impingement Drag 253

9.9 Closed-Form Solutions for Take-Off 254
 9.9.1 Jet Aircraft 255
 9.9.2 Propeller Aircraft 259

9.10 Ground Operations 260
 9.10.1 Ground Manoeuvring 261
 9.10.2 Bird Strike 262
 Summary 264
 Bibliography 264
 Nomenclature for Chapter 9 265

10 Climb Performance .. 269

10.1 Introduction 269

10.2 Closed-Form Solutions 270
 10.2.1 Steady Climb of Jet Airplane 270
 10.2.2 Steady Climb of Propeller Airplane 271
 10.2.3 Climb at Maximum Angle of Climb 272

10.3 Climb to Altitude of a Commercial Airplane 273
 10.3.1 Climb Profiles 273
 10.3.2 OEI Take-Off and Go-Around 277
 10.3.3 Governing Equations 277
 10.3.4 Boundary-Value Problem 278
 10.3.5 Numerical Issues 281
 10.3.6 Initial Climb with One Engine Inoperative 282

10.4 Climb of Commercial Propeller Aircraft 282

10.5 Energy Methods 285
 10.5.1 Total-Energy Model 286
 10.5.2 Specific Excess Power Charts 288
 10.5.3 Differential Excess Power Charts 290

10.6 Minimum Problems with the Energy Method 291
 10.6.1 Minimum Time to Climb and Steepest Climb 291
 10.6.2 Minimum Fuel to Climb 292
 10.6.3 Polar Chart for the Climb Rate 292
10.6.4 Case Study: Climb to Specified Mach Number 293
10.6.5 Minimum Flight Paths 295
Summary 296
Bibliography 296
Nomenclature for Chapter 10 297

11 Descent and Landing Performance 300
11.1 En-Route Descent 300
11.2 Final Approach 303
11.3 Continuous Descent Approach 307
11.4 Steep Descent 308
11.5 Unpowered Descent 311
11.5.1 Minimum Sinking Speed 311
11.5.2 Minimum Glide Angle 312
11.5.3 General Gliding Flight 313
11.5.4 Maximum Glide Range with the Energy Method 314
11.6 Holding Procedures 315
11.7 Landing Performance 316
11.7.1 Airborne Phase 317
11.7.2 Landing Run 318
11.7.3 Crab Landing 320
11.8 Go-Around Performance 323
Summary 324
Bibliography 325
Nomenclature for Chapter 11 325

12 Cruise Performance 328
12.1 Introduction 328
12.2 Point Performance 329
12.2.1 Specific Air Range at Subsonic Speed 330
12.2.2 Figure of Merit 331
12.2.3 Weight-Altitude Relationship 332
12.3 Numerical Solution of the Specific Air Range 332
12.3.1 Case Study: Gulfstream G550 335
12.3.2 Case Study: ATR72-500 338
12.3.3 Effects of Atmospheric Winds on SAR 338
12.4 The Range Equation 339
12.4.1 Endurance 341
12.5 Subsonic Cruise of Jet Aircraft 341
12.5.1 Cruise at Constant Altitude and Mach Number 342
12.5.2 Cruise at Constant Altitude and Lift Coefficient 343
12.5.3 Cruise at Constant Mach and Lift Coefficient 343
12.5.4 Comparison among Cruise Programs 344
12.5.5 Fuel Burn for Given Range 345
Contents

12.6 Cruise Range of Propeller Aircraft .. 346
12.7 Cruise Altitude Selection .. 347
12.8 Cruise Performance Deterioration ... 349
12.9 Cost Index and Economic Mach Number 350
12.10 Centre of Gravity Position ... 352
12.11 Supersonic Cruise ... 353
12.11.1 Cruise at Constant Altitude and Mach Number 354
12.11.2 Cruise at Constant Mach Number and Lift Coefficient 355
Summary .. 355
Bibliography ... 356
Nomenclature for Chapter 12 ... 357

13 Manoeuvre Performance ... 360
13.1 Introduction ... 360
13.2 Powered Turns .. 361
13.2.1 Banked Turn at Constant Thrust .. 362
13.2.2 Turn Power and High-Speed Manoeuvre 363
13.2.3 Turn Rates and Corner Speed .. 365
13.2.4 Minimum-Fuel Turn ... 367
13.3 Unpowered Turns ... 369
13.4 Manoeuvre Envelope: V-n Diagram .. 370
13.4.1 Sustainable g-Loads ... 374
13.5 Roll Performance ... 374
13.5.1 Mach Number Effects .. 378
13.6 Pull-Up Manoeuvre ... 379
13.7 Flight in a Downburst ... 380
13.7.1 Aircraft Manoeuvre in a Downburst ... 383
13.7.2 Case Study: Flight in a Downburst ... 386
Summary .. 387
Bibliography ... 387
Nomenclature for Chapter 13 ... 389

14 Thermo-Structural Performance ... 392
14.1 Cold-Weather Operations ... 392
14.1.1 Aircraft Icing ... 394
14.2 Aviation Fuels ... 397
14.3 Fuel Temperature in Flight ... 400
14.4 Fuel-Temperature Model ... 402
14.4.1 Fuel-Vapour Model ... 404
14.4.2 Heat-Transfer Model .. 404
14.4.3 Numerical Solution ... 405
14.4.4 Numerical Solution and Verification ... 407
14.5 Tyre-Heating Model ... 409
14.5.1 Numerical Simulations ... 416
14.6 Jet Blast .. 418
Contents

Summary 419
Bibliography 419
Nomenclature for Chapter 14 420

15 **Mission Analysis** 423

15.1 Mission Profiles 423
15.1.1 Operational Parameters 425

15.2 Range-Payload Chart 426
15.2.1 Case Study: Range Sensitivity Analysis 429
15.2.2 Case Study: Payload-Range of the ATR72-500 430
15.2.3 Calculation of the Payload-Range Chart 430

15.3 Mission Analysis 432
15.3.1 Mission Range for Given Fuel and Payload 434

15.4 Mission Fuel for Given Range and Payload 435
15.4.1 Mission-Fuel Prediction 435
15.4.2 Mission-Fuel Iterations 436

15.5 Reserve Fuel 438
15.5.1 Redispatch Procedure 441

15.6 Take-Off Weight Limited by MLW 442

15.7 Mission Problems 443
15.7.1 Cruise with Intermediate Stop 443
15.7.2 Fuel Tankering 444
15.7.3 Equal-Time Point and Point-of-No-Return 446

15.8 Direct Operating Costs 448

15.9 Case Study: Aircraft and Route Selection 453

15.10 Case Study: Fuel Planning for Specified Range, B777-300 455

15.11 Case Study: Payload-Range Analysis of Float-Plane 460
15.11.1 Estimation of Floats Drag from Payload-Range Chart 460

15.12 Risk Analysis in Aircraft Performance 463
Summary 465
Bibliography 466
Nomenclature for Chapter 15 467

16 **Aircraft Noise: Noise Sources** 470

16.1 Introduction 470

16.2 Definition of Sound and Noise 471
16.2.1 Integral Metrics: Effective Perceived Noise 472
16.2.2 Integral Metrics: Sound Exposure Level 475

16.3 Aircraft Noise Model 475
16.3.1 Polar-Emission Angle 477

16.4 Propulsive Noise 478
16.4.1 Noise-Propulsion System Interface 478
16.4.2 Fan and Compressor Noise 479
16.4.3 Combustor Noise 483
16.4.4 Turbine Noise 484
16.4.5 Single-Jet Noise 489
Contents

16.4.6 Co-Axial Jet Noise 491
16.4.7 Far-Field Noise from a Subsonic Circular Jet 493
16.4.8 Stone Jet Noise Model 494
16.4.9 Jet-Noise Shielding 501
16.5 APU Noise 508
16.6 Airframe Noise 509
16.6.1 Wing Noise 510
16.6.2 Landing-Gear Noise 512
16.7 Propeller Noise 516
16.7.1 Propeller’s Harmonic Noise 517
16.7.2 Propeller’s Broadband Noise 521
Summary 523
Bibliography 524
Nomenclature for Chapter 16 527

17 Aircraft Noise: Propagation 533
17.1 Airframe Noise Shielding 533
17.2 Atmospheric Absorption of Noise 535
17.3 Ground Reflection 538
17.3.1 Ground Properties 541
17.3.2 Turbulence Effects 542
17.4 Wind and Temperature Gradient Effects 543
17.4.1 Numerical Solution 545
Summary 548
Bibliography 549
Nomenclature for Chapter 17 550

18 Aircraft Noise: Flight Trajectories 553
18.1 Aircraft Noise Certification 553
18.2 Noise-Abatement Procedures 560
18.2.1 Cumulative Noise Index 561
18.2.2 Noise-Program Flowchart 562
18.3 Flight-Mechanics Integration 564
18.3.1 Noise Data Handling 565
18.4 Noise Sensitivity Analysis 566
18.5 Case Study: Noise Trajectories of Jet Aircraft 568
18.6 Case Study: Noise Trajectories of Propeller Aircraft 570
18.7 Further Parametric Analysis of Noise Performance 572
18.8 Verification of the Aircraft-Noise Model 574
18.9 Noise Footprint 578
18.9.1 Noise Maps Refinement 580
18.10 Noise from Multiple Aircraft Movements 581
18.10.1 Noise Reduction and Its Limitations 584
Summary 584
Bibliography 585
Nomenclature for Chapter 18 586
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Environmental Performance</td>
<td>589</td>
</tr>
<tr>
<td></td>
<td>19.1 Aircraft Contrails</td>
<td>589</td>
</tr>
<tr>
<td></td>
<td>19.1.1 Cirrus Clouds</td>
<td>591</td>
</tr>
<tr>
<td></td>
<td>19.1.2 Cruise Altitude Flexibility</td>
<td>593</td>
</tr>
<tr>
<td></td>
<td>19.1.3 The Contrail Factor</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td>19.1.4 Effects of Propulsive Efficiency</td>
<td>596</td>
</tr>
<tr>
<td></td>
<td>19.1.5 Heat Released in High Atmosphere</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td>19.2 Radiative Forcing of Exhaust Emissions</td>
<td>599</td>
</tr>
<tr>
<td></td>
<td>19.3 Landing and Take-Off Emissions</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>19.4 Case Study: Carbon-Dioxide Emissions</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>19.5 The Perfect Flight</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>19.6 Emissions Trading</td>
<td>608</td>
</tr>
<tr>
<td></td>
<td>19.7 Other Aspects of Emissions</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>611</td>
</tr>
<tr>
<td></td>
<td>Nomenclature for Chapter 19</td>
<td>612</td>
</tr>
<tr>
<td>20</td>
<td>Epilogue</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>Appendix A: Gulfstream G-550</td>
<td>617</td>
</tr>
<tr>
<td></td>
<td>Appendix B: Certified Aircraft Noise Data</td>
<td>622</td>
</tr>
<tr>
<td></td>
<td>Appendix C: Options for the FLIGHT Program</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>627</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cross-sectional areas of selected supercritical wing sections</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Volume breakdown of selected aircraft; all volumes in [m³]</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Calculations of MAC for the Airbus A320-200 aircraft; graphs on the same scale</td>
<td>35</td>
</tr>
<tr>
<td>2.4</td>
<td>Analysis of the geometry of the F4 aircraft model</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Wetted-area breakdown for the selected aircraft (calculated). All areas are in [m²]; ()* data are approximate</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Payload data for very large aircraft; X is the range at maximum payload</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Standard passenger weights (rounded to full kg)</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Fuel tanks of some Airbus airplanes. ACT = Additional Central Tanks; Jet-A1 density at 15 ℃ = 0.804 kg/l</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Weight breakdown of Airbus airplanes; mass in [kg]</td>
<td>73</td>
</tr>
<tr>
<td>3.5</td>
<td>Airplane mass properties at take-off-empty (no fuel) configuration (calculated)</td>
<td>73</td>
</tr>
<tr>
<td>3.6</td>
<td>Coefficients of Equation 3.44</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>Profile drag sensitivity for the Airbus A380-861 resulting from (\Delta A_{wet} = 2%). All drag coefficients are given as drag counts</td>
<td>105</td>
</tr>
<tr>
<td>4.2</td>
<td>Aircraft separation following ICAO rules</td>
<td>118</td>
</tr>
<tr>
<td>5.1</td>
<td>Power ratings for PW127 turboprop engine variants, sea level; maximum temperatures as indicated</td>
<td>129</td>
</tr>
<tr>
<td>5.2</td>
<td>Turbofan-engine parameters used for flight and aircraft-noise calculations</td>
<td>133</td>
</tr>
<tr>
<td>5.3</td>
<td>Selected engine data for the CF6-80C2A3; data with an asterisk * are estimated</td>
<td>135</td>
</tr>
<tr>
<td>5.4</td>
<td>Typical APU fuel flow [kg/s], depending on load type and atmospheric conditions</td>
<td>148</td>
</tr>
<tr>
<td>5.5</td>
<td>Estimated APU power and emission database</td>
<td>148</td>
</tr>
<tr>
<td>6.1</td>
<td>Design limitations of the Dowty propeller R391; (\Psi_w) is the wind direction</td>
<td>156</td>
</tr>
<tr>
<td>6.2</td>
<td>Some notable propellers and their applications</td>
<td>157</td>
</tr>
<tr>
<td>7.1</td>
<td>Stability derivatives for calculation of airplane response to asymmetric thrust; model Boeing B747-100</td>
<td>190</td>
</tr>
</tbody>
</table>
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Sea-level data of the International Standard Atmosphere</td>
<td>196</td>
</tr>
<tr>
<td>8.2</td>
<td>Recognised international symbols for design air speeds and Mach numbers</td>
<td>208</td>
</tr>
<tr>
<td>9.1</td>
<td>International symbols for take-off of a transport airplane</td>
<td>225</td>
</tr>
<tr>
<td>9.2</td>
<td>Delay in response time after activation for selected systems</td>
<td>240</td>
</tr>
<tr>
<td>9.3</td>
<td>Average rolling coefficient for some runway conditions</td>
<td>255</td>
</tr>
<tr>
<td>9.4</td>
<td>Estimated fuel burn during a taxi-out</td>
<td>261</td>
</tr>
<tr>
<td>10.1</td>
<td>Approximate limit speeds for selected commercial aircraft</td>
<td>275</td>
</tr>
<tr>
<td>10.2</td>
<td>Key events in the OEI take-off and go-around procedure</td>
<td>278</td>
</tr>
<tr>
<td>10.3</td>
<td>Climb report for the Airbus A320-200 with CFM56-5C4P turbofan engines and 331-9 APU; standard day, no wind</td>
<td>280</td>
</tr>
<tr>
<td>10.4</td>
<td>Climb report for the case shown in Figure 10.6</td>
<td>285</td>
</tr>
<tr>
<td>10.5</td>
<td>Climb time and fuel for the flight paths shown in Figure 10.15</td>
<td>295</td>
</tr>
<tr>
<td>11.1</td>
<td>Flap and slat settings for the Airbus A320-200</td>
<td>305</td>
</tr>
<tr>
<td>11.2</td>
<td>Descent report for the A320-200, conventional descent</td>
<td>308</td>
</tr>
<tr>
<td>11.3</td>
<td>Descent report for the A320-200, continuous descent approach</td>
<td>308</td>
</tr>
<tr>
<td>11.4</td>
<td>Definition of landing speeds</td>
<td>318</td>
</tr>
<tr>
<td>11.5</td>
<td>Limit crosswind speeds coupled with runway conditions</td>
<td>321</td>
</tr>
<tr>
<td>12.1</td>
<td>Summary of subsonic cruise conditions, jet aircraft</td>
<td>345</td>
</tr>
<tr>
<td>12.2</td>
<td>SAR penalty due to non-optimal cruise altitude for some Airbus airplanes</td>
<td>349</td>
</tr>
<tr>
<td>14.1</td>
<td>Characteristics of aviation fuels, at 15 °C; data are averages</td>
<td>398</td>
</tr>
<tr>
<td>15.1</td>
<td>Fuel use for mixed long- and short-range service of the Boeing B777-300 (calculated)</td>
<td>444</td>
</tr>
<tr>
<td>15.2</td>
<td>Summary of parameters for DOC model</td>
<td>452</td>
</tr>
<tr>
<td>15.3</td>
<td>Calculated payload fuel efficiency for long-haul commercial flight</td>
<td>453</td>
</tr>
<tr>
<td>15.4</td>
<td>Operational data for mission analysis in case study</td>
<td>456</td>
</tr>
<tr>
<td>15.5</td>
<td>Summary of flight-planning analysis</td>
<td>457</td>
</tr>
<tr>
<td>15.6</td>
<td>Taxi-out report of fuel/weight-planning analysis</td>
<td>458</td>
</tr>
<tr>
<td>15.7</td>
<td>Take-off report of fuel/weight-planning analysis</td>
<td>458</td>
</tr>
<tr>
<td>15.8</td>
<td>Cruise report of fuel/weight-planning analysis</td>
<td>459</td>
</tr>
<tr>
<td>15.9</td>
<td>Basic performance data of model float-plane</td>
<td>460</td>
</tr>
<tr>
<td>15.10</td>
<td>Estimated floats’ dimensions</td>
<td>460</td>
</tr>
<tr>
<td>16.1</td>
<td>Summary of integral noise metrics</td>
<td>472</td>
</tr>
<tr>
<td>16.2</td>
<td>Polar directivity levels</td>
<td>485</td>
</tr>
<tr>
<td>16.3</td>
<td>Empirical constants for turbine acoustic power</td>
<td>486</td>
</tr>
<tr>
<td>16.4</td>
<td>Spectrum function for broadband noise</td>
<td>487</td>
</tr>
<tr>
<td>17.1</td>
<td>Numerical coefficients for Equation 17.7</td>
<td>537</td>
</tr>
<tr>
<td>17.2</td>
<td>Typical values for flow resistivity and inverse effective depth</td>
<td>542</td>
</tr>
<tr>
<td>18.1</td>
<td>Microphone positions for aircraft-noise measurements at London Heathrow</td>
<td>557</td>
</tr>
<tr>
<td>18.2</td>
<td>Noise sensitivity matrix for a Boeing 777-300 for ± 2 dB on take-off and landing trajectories (simulated data)</td>
<td>567</td>
</tr>
<tr>
<td>18.3</td>
<td>ATR72-500 noise trajectories; All noise levels are in dB</td>
<td>572</td>
</tr>
</tbody>
</table>
Table of Contents

Tables

18.4 Calculated noise metrics (in dB) over a conventional and steep landing trajectory at a FAR/ICAO landing point and point 1,000 m upstream .. 573
19.1 ICAO flight modes, times and thrust rating as % of maximum thrust .. 602
19.2 LTO emissions summary for Airbus A320-200 with CFM56 engines .. 603
19.3 Analysis of a perfect flight with an Airbus A320-200 model .. 608
A.1 Weights and capacities of the G-550 .. 618
A.2 Basic dimensions of the G-550 ... 618
A.3 Operational limits of the G550 .. 619
A.4 Selected data of the Rolls-Royce BR710 C4-11 gas-turbine engine ... 619
A.5 Landing gear of the G550 .. 620
B.1 Certified noise levels for commercial aircraft ... 622
B.2 Certified noise levels for commercial aircraft (part 2) ... 623