ADVANCED AIRCRAFT FLIGHT PERFORMANCE

This book deals with aircraft flight performance. It focuses on commercial aircraft but also considers examples of high-performance military aircraft. The framework is a multi-disciplinary engineering analysis, fully supported by flight simulation, with software validation at several levels. The book covers topics such as geometrical configurations, configuration aerodynamics and determination of aerodynamic derivatives, weight engineering, propulsion systems (gas turbine engines and propellers), aircraft trim, flight envelopes, mission analysis, trajectory optimisation, aircraft noise, noise trajectories and analysis of environmental performance. A unique feature of this book is the discussion and analysis of the environmental performance of the aircraft, focusing on topics such as aircraft noise and carbon dioxide emissions.

Dr. Antonio Filippone’s expertise is in the fields of computational and experimental aerodynamics, flight mechanics, energy conversion systems, propulsion systems, rotating machines (helicopter rotors, propellers, wind turbines), systems engineering, and design and optimisation. He has published more than eighty technical papers, ten book chapters, and two books, including Flight Performance of Fixed and Rotary Wing Aircraft (2006).
Cambridge Aerospace Series

Editors
Wei Shyy
and
Vigor Yang

1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
2. P. Berlin: The Geostationary Applications Satellite
3. M. J. T. Smith: Aircraft Noise
5. W. A. Mair and D. L. Birdsell: Aircraft Performance
7. M. J. Sidi: Spacecraft Dynamics and Control
8. J. D. Anderson: A History of Aerodynamics
11. J. P. Fielding: Introduction to Aircraft Design
16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
20. C. A. Wagner, T. Hüttl, and P. Sagaut (eds.): Large-Eddy Simulation for Acoustics
25. C. Segal: The Scramjet Engine: Processes and Characteristics
26. J. F. Doyle: Guided Explorations of the Mechanics of Solids and Structures
27. A. K. Kundu: Aircraft Design
28. M. I. Friswell, J. E. T. Penny, S. D. Garvey, and A. W. Lees: Dynamics of Rotating Machines
29. B. A. Conway (ed.): Spacecraft Trajectory Optimization
30. R. J. Adrian and J. Westerweel: Particle Image Velocimetry
32. H. Babinsky and J. K. Harvey: Shock Wave–Boundary-Layer Interactions
33. C. K. W. Tam: Computational Aeroacoustics: A Wave Number Approach
34. A. Filippone: Advanced Aircraft Flight Performance
Ignorantia quem portum petat nullus suus ventus est.

No wind is favourable to a sailor who does not know at which port to land.

[Lucius A. Seneca (4 BC–AD 65), *Moral Letters to Lucilius* (letter 71)]
Contents

Tables page xvii
Preface xxi
Nomenclature xxiii
Technology Warning xxvii

1 Prolegomena ... 1
 1.1 Performance Parameters 2
 1.2 Flight Optimisation 4
 1.3 Certificate of Airworthiness 4
 1.4 The Need for Upgrading 6
 1.5 Military Aircraft Requirements 7
 1.6 Review of Comprehensive Performance Programs 9
 1.7 The Scope of This Book 10
 1.8 Comprehensive Programs in This Book Bibliography 13

2 Aircraft Models ... 16
 2.1 Model for Transport Aircraft 16
 2.2 Wire-Frame Definitions 20
 2.2.1 Stochastic Method for Reference Areas 21
 2.3 Wing Sections 23
 2.4 Wetted Areas 24
 2.4.1 Lifting Surfaces 24
 2.4.2 Fuselage 25
 2.4.3 Nacelles and Pylons 28
 2.4.4 Winglets 29
 2.4.5 Flaps, Slats and Other Control Surfaces 30
 2.4.6 Model Verification: Cross-Sectional Area 30
 2.5 Aircraft Volumes 31
 2.5.1 Case Study: Do Aircraft Sink or Float on Water? 32
 2.5.2 Wing Fuel Tanks 33
 2.6 Mean Aerodynamic Chord 34
Contents

2.7 Geometry Model Verification 35
2.7.1 Case Study: Wetted Areas of Transport Aircraft 36
2.8 Reference Systems 37
2.8.1 Angular Relationships 40
2.8.2 Definition of the Aircraft State 41
Summary 41
Bibliography 42
Nomenclature for Chapter 2 42

3 Weight and Balance Performance 45
3.1 A Question of Size 45
3.2 Design and Operational Weights 47
3.3 Weight Management 51
3.4 Determination of Operational Limits 52
3.5 Centre of Gravity Envelopes 53
3.5.1 CG Travel during Refuelling 54
3.5.2 CG Travel in Flight 55
3.5.3 Design Limits on CG Position 57
3.5.4 Determination of the Zero-Fuel CG Limit 59
3.5.5 Influence of CG Position on Performance 59
3.6 Operational Moments 60
3.7 Use of Wing Tanks 61
3.8 Mass and Structural Properties 62
3.8.1 Mass Distribution 64
3.8.2 Centre of Gravity 68
3.8.3 Moments of Inertia 68
3.8.4 Case Study: Moments of Inertia 73
Summary 75
Bibliography 75
Nomenclature for Chapter 3 76

4 Aerodynamic Performance 78
4.1 Aircraft Lift 78
4.1.1 Calculation of Wing Lift 79
4.1.2 Wing Lift during a Ground Run 79
4.1.3 Lift Augmentation 81
4.1.4 Maximum Lift Coefficient 84
4.2 Aircraft Drag 85
4.2.1 Lift-Induced Drag 85
4.2.2 Profile Drag 87
4.2.3 Wave Drag 93
4.2.4 Interference Drag 94
4.2.5 Drag of the Control Surfaces 95
4.2.6 Landing-Gear Drag 96
4.2.7 Environmental Effects 100
4.2.8 Other Drag Components 102
4.2.9 Case Study: Aerodynamics of the F4 Wind-Tunnel Model 102
4.2.10 Case Study: Drag Analysis of Transport Aircraft 103
4.2.11 Case Study: Drag Analysis of the ATR72-500 104
4.2.12 Case Study: Drag Analysis of the Airbus A380-861 104
4.3 Transonic Airfoil Model 105
4.4 Aircraft Drag at Transonic and Supersonic Speeds 108
4.4.1 Drag of Bodies of Revolution 110
4.5 Buffet Boundaries 113
4.6 Aerodynamic Derivatives 114
4.7 Float-Plane’s Hull Resistance in Water 115
4.8 Vortex Wakes 116
Summary 118
Bibliography 118
Nomenclature for Chapter 4 121

5 Engine Performance ... 126
5.1 Gas Turbine Engines 126
5.2 Thrust and Power Ratings 128
5.2.1 Engine Derating 129
5.2.2 Transient Response 130
5.3 Turbofan Engine Model 130
5.3.1 Aero-Thermodynamic Model 132
5.3.2 Determination of Design Point 133
5.3.3 Case Study: General Electric CF6-80C2 134
5.3.4 Rubber Engines 137
5.3.5 Effects of Contamination 138
5.3.6 Performance Deterioration 139
5.3.7 Data Handling 140
5.4 Turboprop Engines 141
5.4.1 Case Study: Turboprop PW127M 143
5.5 Turbojet with After-Burning 143
5.6 Generalised Engine Performance 145
5.7 Auxiliary Power Unit 147
5.7.1 Case Study: Honeywell RE-220 APU 149
Summary 149
Bibliography 150
Nomenclature for Chapter 5 150

6 Propeller Performance .. 152
6.1 Propeller Definitions 152
6.1.1 Propeller Limitations 156
6.2 Propulsion Models 156
6.2.1 Axial Momentum Theory 157
6.2.2 The Blade Element Method 160
6.2.3 Propeller in Non-Axial Flight 163
6.2.4 Case Study: Hamilton-Sundstrand F568 Propeller 165
Contents

6.3 Flight Mechanics Integration
 6.3.1 Propeller’s Rotational Speed 171

6.4 Propeller Installation Effects
 6.4.1 Gearbox Effects 175
Summary 175
Bibliography 176
Nomenclature for Chapter 6 176

7 Airplane Trim
 7.1 Longitudinal Trim at Cruise Conditions
 7.1.1 Trim Drag 183
 7.1.2 Solution of the Static Longitudinal Trim 183
 7.1.3 Stick-Free Longitudinal Trim 184
 7.2 Airplane Control under Thrust Asymmetry
 7.2.1 Dihedral Effect 186
Summary 192
Bibliography 192
Nomenclature for Chapter 7 192

8 Flight Envelopes
 8.1 The Atmosphere
 8.1.1 International Standard Atmosphere 195
 8.1.2 Other Atmosphere Models 198
 8.2 Operating Speeds 203
 8.3 Design Speeds 206
 8.4 Optimum Level Flight Speeds 208
 8.5 Ceiling Performance
 8.5.1 Pressure Effects on Human Body 210
 8.5.2 Cabin Pressurisation 211
 8.6 Flight Envelopes
 8.6.1 Calculation of Flight Envelopes 213
 8.6.2 Case Study: Flight Envelopes of the A320 and G550 215
 8.7 Supersonic Flight
 8.7.1 Supersonic Dash 216
 8.7.2 Supersonic Acceleration 217
 8.7.3 Supersonic Flight Envelopes 218
Summary 220
Bibliography 220
Nomenclature for Chapter 8 221

9 Take-Off and Field Performance
 9.1 Take-Off of Transport-Type Airplane 224
 9.2 Take-Off Equations: Jet Airplane
 9.2.1 Ground Run 229
 9.2.2 Rolling Coefficients 231
9.3 Solution of the Take-Off Equations 232
 9.3.1 Case Study: Normal Take-Off of an Airbus A300-600 Model 234
 9.3.2 Effect of the CG Position on Take-Off 236
 9.3.3 Effect of Shock Absorbers 236
9.4 Take-Off with One Engine Inoperative 238
 9.4.1 Decelerate-Stop 239
 9.4.2 Accelerate-Stop 240
9.5 Take-Off of Propeller Aircraft 242
9.6 Minimum Control Speed 245
9.7 Aircraft Braking Concepts 248
9.8 Performance on Contaminated Runways 250
 9.8.1 Contamination Drag 251
 9.8.2 Impingement Drag 253
9.9 Closed-Form Solutions for Take-Off 254
 9.9.1 Jet Aircraft 255
 9.9.2 Propeller Aircraft 259
9.10 Ground Operations 260
 9.10.1 Ground Manoeuvring 261
 9.10.2 Bird Strike 262
 Summary 264
 Bibliography 264
 Nomenclature for Chapter 9 265

10 Climb Performance ... 269
10.1 Introduction 269
10.2 Closed-Form Solutions 270
 10.2.1 Steady Climb of Jet Airplane 270
 10.2.2 Steady Climb of Propeller Airplane 271
 10.2.3 Climb at Maximum Angle of Climb 272
10.3 Climb to Altitude of a Commercial Airplane 273
 10.3.1 Climb Profiles 273
 10.3.2 OEI Take-Off and Go-Around 277
 10.3.3 Governing Equations 277
 10.3.4 Boundary-Value Problem 278
 10.3.5 Numerical Issues 281
 10.3.6 Initial Climb with One Engine Inoperative 282
10.4 Climb of Commercial Propeller Aircraft 282
10.5 Energy Methods 285
 10.5.1 Total-Energy Model 286
 10.5.2 Specific Excess Power Charts 288
 10.5.3 Differential Excess Power Charts 290
10.6 Minimum Problems with the Energy Method 291
 10.6.1 Minimum Time to Climb and Steepest Climb 291
 10.6.2 Minimum Fuel to Climb 292
 10.6.3 Polar Chart for the Climb Rate 292
Contents

10.6.4 Case Study: Climb to Specified Mach Number 293
10.6.5 Minimum Flight Paths 295
Summary 296
Bibliography 296
Nomenclature for Chapter 10 297

11 Descent and Landing Performance .. 300

11.1 En-Route Descent 300
11.2 Final Approach 303
11.3 Continuous Descent Approach 307
11.4 Steep Descent 308
11.5 Unpowered Descent 311
 11.5.1 Minimum Sinking Speed 311
 11.5.2 Minimum Glide Angle 312
 11.5.3 General Gliding Flight 313
 11.5.4 Maximum Glide Range with the Energy Method 314
11.6 Holding Procedures 315
11.7 Landing Performance 316
 11.7.1 Airborne Phase 317
 11.7.2 Landing Run 318
 11.7.3 Crab Landing 320
11.8 Go-Around Performance 323
 Summary 324
 Bibliography 325
 Nomenclature for Chapter 11 325

12 Cruise Performance ... 328

12.1 Introduction 328
12.2 Point Performance 329
 12.2.1 Specific Air Range at Subsonic Speed 330
 12.2.2 Figure of Merit 331
 12.2.3 Weight-Altitude Relationship 332
12.3 Numerical Solution of the Specific Air Range 332
 12.3.1 Case Study: Gulfstream G550 335
 12.3.2 Case Study: ATR72-500 338
 12.3.3 Effects of Atmospheric Winds on SAR 338
12.4 The Range Equation 339
 12.4.1 Endurance 341
12.5 Subsonic Cruise of Jet Aircraft 341
 12.5.1 Cruise at Constant Altitude and Mach Number 342
 12.5.2 Cruise at Constant Altitude and Lift Coefficient 343
 12.5.3 Cruise at Constant Mach and Lift Coefficient 343
 12.5.4 Comparison among Cruise Programs 344
 12.5.5 Fuel Burn for Given Range 345
Contents

12.6 Cruise Range of Propeller Aircraft 346
12.7 Cruise Altitude Selection 347
12.8 Cruise Performance Deterioration 349
12.9 Cost Index and Economic Mach Number 350
12.10 Centre of Gravity Position 352
12.11 Supersonic Cruise 353
12.11.1 Cruise at Constant Altitude and Mach Number 354
12.11.2 Cruise at Constant Mach Number and Lift Coefficient 355
Summary 355
Bibliography 356
Nomenclature for Chapter 12 357

13 **Manoeuvre Performance** 360
13.1 Introduction 360
13.2 Powered Turns 361
13.2.1 Banked Turn at Constant Thrust 362
13.2.2 Turn Power and High-Speed Manoeuvre 363
13.2.3 Turn Rates and Corner Speed 365
13.2.4 Minimum-Fuel Turn 367
13.3 Unpowered Turns 369
13.4 Manoeuvre Envelope: $V-n$ Diagram 370
13.4.1 Sustainable g-Loads 374
13.5 Roll Performance 374
13.5.1 Mach Number Effects 378
13.6 Pull-Up Manoeuvre 379
13.7 Flight in a Downburst 380
13.7.1 Aircraft Manoeuvre in a Downburst 383
13.7.2 Case Study: Flight in a Downburst 386
Summary 387
Bibliography 387
Nomenclature for Chapter 13 389

14 **Thermo-Structural Performance** 392
14.1 Cold-Weather Operations 392
14.1.1 Aircraft Icing 394
14.2 Aviation Fuels 397
14.3 Fuel Temperature in Flight 400
14.4 Fuel-Temperature Model 402
14.4.1 Fuel-Vapour Model 404
14.4.2 Heat-Transfer Model 404
14.4.3 Numerical Solution 405
14.4.4 Numerical Solution and Verification 407
14.5 Tyre-Heating Model 409
14.5.1 Numerical Simulations 416
14.6 Jet Blast 418
15 Mission Analysis ... 423
 15.1 Mission Profiles 423
 15.1.1 Operational Parameters 425
 15.2 Range-Payload Chart 426
 15.2.1 Case Study: Range Sensitivity Analysis 429
 15.2.2 Case Study: Payload-Range of the ATR72-500 430
 15.2.3 Calculation of the Payload-Range Chart 430
 15.3 Mission Analysis 432
 15.3.1 Mission Range for Given Fuel and Payload 434
 15.4 Mission Fuel for Given Range and Payload 435
 15.4.1 Mission-Fuel Prediction 435
 15.4.2 Mission-Fuel Iterations 436
 15.5 Reserve Fuel 438
 15.5.1 Redispatch Procedure 441
 15.6 Take-Off Weight Limited by MLW 442
 15.7 Mission Problems 443
 15.7.1 Cruise with Intermediate Stop 443
 15.7.2 Fuel Tankering 444
 15.7.3 Equal-Time Point and Point-of-No-Return 446
 15.8 Direct Operating Costs 448
 15.9 Case Study: Aircraft and Route Selection 453
 15.10 Case Study: Fuel Planning for Specified Range, B777-300 455
 15.11 Case Study: Payload-Range Analysis of Float-Plane 460
 15.11.1 Estimation of Floats Drag from Payload-Range Chart 460
 15.12 Risk Analysis in Aircraft Performance 463
 Summary 465
 Bibliography 466
 Nomenclature for Chapter 15 467

16 Aircraft Noise: Noise Sources ... 470
 16.1 Introduction 470
 16.2 Definition of Sound and Noise 471
 16.2.1 Integral Metrics: Effective Perceived Noise 472
 16.2.2 Integral Metrics: Sound Exposure Level 475
 16.3 Aircraft Noise Model 475
 16.3.1 Polar-Emission Angle 477
 16.4 Propulsive Noise 478
 16.4.1 Noise-Propulsion System Interface 478
 16.4.2 Fan and Compressor Noise 479
 16.4.3 Combustor Noise 483
 16.4.4 Turbine Noise 484
 16.4.5 Single-Jet Noise 489
16.4.6 Co-Axial Jet Noise 491
16.4.7 Far-Field Noise from a Subsonic Circular Jet 493
16.4.8 Stone Jet Noise Model 494
16.4.9 Jet-Noise Shielding 501

16.5 APU Noise 508

16.6 Airframe Noise 509
16.6.1 Wing Noise 510
16.6.2 Landing-Gear Noise 512

16.7 Propeller Noise 516
16.7.1 Propeller’s Harmonic Noise 517
16.7.2 Propeller’s Broadband Noise 521

Summary 523
Bibliography 524
Nomenclature for Chapter 16 527

17 Aircraft Noise: Propagation 533
17.1 Airframe Noise Shielding 533
17.2 Atmospheric Absorption of Noise 535
17.3 Ground Reflection 538
17.3.1 Ground Properties 541
17.3.2 Turbulence Effects 542
17.4 Wind and Temperature Gradient Effects 543
17.4.1 Numerical Solution 545

Summary 548
Bibliography 549
Nomenclature for Chapter 17 550

18 Aircraft Noise: Flight Trajectories 553
18.1 Aircraft Noise Certification 553
18.2 Noise-Abatement Procedures 560
18.2.1 Cumulative Noise Index 561
18.2.2 Noise-Program Flowchart 562
18.3 Flight-Mechanics Integration 564
18.3.1 Noise Data Handling 565
18.4 Noise Sensitivity Analysis 566
18.5 Case Study: Noise Trajectories of Jet Aircraft 568
18.6 Case Study: Noise Trajectories of Propeller Aircraft 570
18.7 Further Parametric Analysis of Noise Performance 572
18.8 Verification of the Aircraft-Noise Model 574
18.9 Noise Footprint 578
18.9.1 Noise Maps Refinement 580
18.10 Noise from Multiple Aircraft Movements 581
18.10.1 Noise Reduction and Its Limitations 584

Summary 584
Bibliography 585
Nomenclature for Chapter 18 586
Contents

19 Environmental Performance ... 589
 19.1 Aircraft Contrails ... 589
 19.1.1 Cirrus Clouds 591
 19.1.2 Cruise Altitude Flexibility 593
 19.1.3 The Contrail Factor 595
 19.1.4 Effects of Propulsive Efficiency 596
 19.1.5 Heat Released in High Atmosphere 599
 19.2 Radiative Forcing of Exhaust Emissions 599
 19.3 Landing and Take-Off Emissions 600
 19.4 Case Study: Carbon-Dioxide Emissions 604
 19.5 The Perfect Flight 606
 19.6 Emissions Trading 608
 19.7 Other Aspects of Emissions 609
 Summary .. 610
 Bibliography ... 611
 Nomenclature for Chapter 19 612

20 Epilogue .. 614

Appendix A: Gulfstream G-550 617
Appendix B: Certified Aircraft Noise Data 622
Appendix C: Options for the FLIGHT Program 624

Index ... 627
Tables

2.1 Cross-sectional areas of selected supercritical wing sections

2.2 Volume breakdown of selected aircraft; all volumes in [m³]

2.3 Calculations of MAC for the Airbus A320-200 aircraft; graphs on the same scale

2.4 Analysis of the geometry of the F4 aircraft model

2.5 Wetted-area breakdown for the selected aircraft (calculated). All areas are in [m²]; ()* data are approximate

3.1 Payload data for very large aircraft; X is the range at maximum payload

3.2 Standard passenger weights (rounded to full kg)

3.3 Fuel tanks of some Airbus airplanes. ACT = Additional Central Tanks; Jet-A1 density at 15 °C = 0.804 kg/l

3.4 Weight breakdown of Airbus airplanes; mass in [kg]

3.5 Airplane mass properties at take-off-empty (no fuel) configuration (calculated)

3.6 Coefficients of Equation 3.44

4.1 Profile drag sensitivity for the Airbus A380-861 resulting from ΔA_wet = 2%. All drag coefficients are given as drag counts

4.2 Aircraft separation following ICAO rules

5.1 Power ratings for PW127 turboprop engine variants, sea level; maximum temperatures as indicated

5.2 Turbofan-engine parameters used for flight and aircraft-noise calculations

5.3 Selected engine data for the CF6-80C2A3; data with an asterisk * are estimated

5.4 Typical APU fuel flow [kg/s], depending on load type and atmospheric conditions

5.5 Estimated APU power and emission database

6.1 Design limitations of the Dowty propeller R391; Ψ_w is the wind direction

6.2 Some notable propellers and their applications

7.1 Stability derivatives for calculation of airplane response to asymmetric thrust; model Boeing B747-100

page 23

33

35

37

38

47

52

63

73

73

74

105

118

129

133

135

148

148

156

157

190
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Sea-level data of the International Standard Atmosphere</td>
<td>196</td>
</tr>
<tr>
<td>8.2</td>
<td>Recognised international symbols for design air speeds and Mach numbers</td>
<td>208</td>
</tr>
<tr>
<td>9.1</td>
<td>International symbols for take-off of a transport airplane</td>
<td>225</td>
</tr>
<tr>
<td>9.2</td>
<td>Delay in response time after activation for selected systems</td>
<td>240</td>
</tr>
<tr>
<td>9.3</td>
<td>Average rolling coefficient for some runway conditions</td>
<td>255</td>
</tr>
<tr>
<td>9.4</td>
<td>Estimated fuel burn during a taxi-out</td>
<td>261</td>
</tr>
<tr>
<td>10.1</td>
<td>Approximate limit speeds for selected commercial aircraft</td>
<td>275</td>
</tr>
<tr>
<td>10.2</td>
<td>Key events in the OEI take-off and go-around procedure</td>
<td>278</td>
</tr>
<tr>
<td>10.3</td>
<td>Climb report for the Airbus A320-200 with CFM56-5C4P turbofan engines and 331-9 APU; standard day, no wind</td>
<td>280</td>
</tr>
<tr>
<td>10.4</td>
<td>Climb report for the case shown in Figure 10.6</td>
<td>285</td>
</tr>
<tr>
<td>10.5</td>
<td>Climb time and fuel for the flight paths shown in Figure 10.15</td>
<td>295</td>
</tr>
<tr>
<td>11.1</td>
<td>Flap and slat settings for the Airbus A320-200</td>
<td>305</td>
</tr>
<tr>
<td>11.2</td>
<td>Descent report for the A320-200, conventional descent</td>
<td>308</td>
</tr>
<tr>
<td>11.3</td>
<td>Descent report for the A320-200, continuous descent approach</td>
<td>308</td>
</tr>
<tr>
<td>11.4</td>
<td>Definition of landing speeds</td>
<td>318</td>
</tr>
<tr>
<td>11.5</td>
<td>Limit crosswind speeds coupled with runway conditions</td>
<td>321</td>
</tr>
<tr>
<td>12.1</td>
<td>Summary of subsonic cruise conditions, jet aircraft</td>
<td>345</td>
</tr>
<tr>
<td>12.2</td>
<td>SAR penalty due to non-optimal cruise altitude for some Airbus airplanes</td>
<td>349</td>
</tr>
<tr>
<td>14.1</td>
<td>Characteristics of aviation fuels, at 15 °C; data are averages</td>
<td>398</td>
</tr>
<tr>
<td>15.1</td>
<td>Fuel use for mixed long- and short-range service of the Boeing B777-300 (calculated)</td>
<td>444</td>
</tr>
<tr>
<td>15.2</td>
<td>Summary of parameters for DOC model</td>
<td>452</td>
</tr>
<tr>
<td>15.3</td>
<td>Calculated payload fuel efficiency for long-haul commercial flight</td>
<td>453</td>
</tr>
<tr>
<td>15.4</td>
<td>Operational data for mission analysis in case study</td>
<td>456</td>
</tr>
<tr>
<td>15.5</td>
<td>Summary of flight-planning analysis</td>
<td>457</td>
</tr>
<tr>
<td>15.6</td>
<td>Taxi-out report of fuel/weight-planning analysis</td>
<td>458</td>
</tr>
<tr>
<td>15.7</td>
<td>Take-off report of fuel/weight-planning analysis</td>
<td>458</td>
</tr>
<tr>
<td>15.8</td>
<td>Cruise report of fuel/weight-planning analysis</td>
<td>459</td>
</tr>
<tr>
<td>15.9</td>
<td>Basic performance data of model float-plane</td>
<td>460</td>
</tr>
<tr>
<td>15.10</td>
<td>Estimated floats’ dimensions</td>
<td>460</td>
</tr>
<tr>
<td>16.1</td>
<td>Summary of integral noise metrics</td>
<td>472</td>
</tr>
<tr>
<td>16.2</td>
<td>Polar directivity levels</td>
<td>485</td>
</tr>
<tr>
<td>16.3</td>
<td>Empirical constants for turbine acoustic power</td>
<td>486</td>
</tr>
<tr>
<td>16.4</td>
<td>Spectrum function for broadband noise</td>
<td>487</td>
</tr>
<tr>
<td>17.1</td>
<td>Numerical coefficients for Equation 17.7</td>
<td>537</td>
</tr>
<tr>
<td>17.2</td>
<td>Typical values for flow resistivity and inverse effective depth</td>
<td>542</td>
</tr>
<tr>
<td>18.1</td>
<td>Microphone positions for aircraft-noise measurements at London Heathrow</td>
<td>557</td>
</tr>
<tr>
<td>18.2</td>
<td>Noise sensitivity matrix for a Boeing 777-300 for ± 2 dB on take-off and landing trajectories (simulated data)</td>
<td>567</td>
</tr>
<tr>
<td>18.3</td>
<td>ATR72-500 noise trajectories; All noise levels are in dB</td>
<td>572</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>18.4</td>
<td>Calculated noise metrics (in dB) over a conventional and steep landing trajectory at a FAR/ICAO landing point and point 1,000 m upstream</td>
<td>573</td>
</tr>
<tr>
<td>19.1</td>
<td>ICAO flight modes, times and thrust rating as % of maximum thrust</td>
<td>602</td>
</tr>
<tr>
<td>19.2</td>
<td>LTO emissions summary for Airbus A320-200 with CFM56 engines</td>
<td>603</td>
</tr>
<tr>
<td>19.3</td>
<td>Analysis of a perfect flight with an Airbus A320-200 model</td>
<td>608</td>
</tr>
<tr>
<td>A.1</td>
<td>Weights and capacities of the G-550</td>
<td>618</td>
</tr>
<tr>
<td>A.2</td>
<td>Basic dimensions of the G-550</td>
<td>618</td>
</tr>
<tr>
<td>A.3</td>
<td>Operational limits of the G550</td>
<td>619</td>
</tr>
<tr>
<td>A.4</td>
<td>Selected data of the Rolls-Royce BR710 C4-11 gas-turbine engine</td>
<td>619</td>
</tr>
<tr>
<td>A.5</td>
<td>Landing gear of the G550</td>
<td>620</td>
</tr>
<tr>
<td>B.1</td>
<td>Certified noise levels for commercial aircraft</td>
<td>622</td>
</tr>
<tr>
<td>B.2</td>
<td>Certified noise levels for commercial aircraft (part 2)</td>
<td>623</td>
</tr>
</tbody>
</table>
Preface

This book is a derivative of an earlier textbook on flight performance. This new work reflects my increased wisdom on the subject and represents an almost complete departure from closed-form solutions that are traditionally taught in under-graduate and post-graduate programs. Over the past several years, I have benefited from the experience of teaching a flight performance course to senior engineers from industry, government departments and academia. In the process, I learned a few new things that now find a place somewhere in the book.

There is an increase in numerical methods in all fields of engineering; nevertheless, flight performance has remarkably resisted change. Some closed-form solutions have been retained for those engineers who need a quick answer. The modern airplane is a complex engineering machine governed by systems, software and avionics. Primitive methods are still widely used, which are then applied to aircraft design and produce results of dubious accuracy that cannot be assessed. Worryingly, these methods are used in most “conceptual design” and “multi-disciplinary optimisation” methods. Now assume, more realistically, that you have been hired to provide flight prediction tools to an airline operator or a manufacturer of engines or airframes, a national or international aviation authority, an air traffic control organisation. Why should they trust your performance software? What is the risk of under-predicting the mission fuel for an intercontinental flight?

As we worried about conceptual design, the world has moved on. There is increased emphasis on airplane evolution and upgrading, which is now reflected in my thinking. At the same time, the environmental performance of the aircraft has become very prominent. Therefore, part of this book is devoted to a wide spectrum of environmental aspects of flight. My initial concerns have slowly shifted from noise to engine emissions. Noise disappears as the aircraft moves away from the receiver, although not many would like to agree. Exhaust gases remain with us for the next few generations. In particular, aircraft condensation trails are there to remind us that aviation is having a measurable impact on our skies. The lack of flexibility in aircraft levels, stepped cruise and descent, and the use of holding patterns in congested air space are all problems that need a solution in the coming years.

The book contains considerable advanced material across several disciplines, including aircraft noise, environmental performance, airframe-propulsion integration, thermo-structural performance and flight mechanics. I am conscious of the
Preface

I am aware of the audacity of the task I have undertaken, but I am confident that this work meets the expectations of the aviation industry and the academic world.

I have developed some fully comprehensive flight codes. One code in particular, FLIGHT, to simulate aircraft performance and mission analysis of transport aircraft, contains most of the cross-disciplinary aspects of performance discussed in this book.

In its present form it consists of about 160 KLOCS (thousand lines of code). Other codes discussed in the book include the propeller code, that is fully integrated with FLIGHT, as well as a supersonic flight performance code (SFLIGHT). Several block flowcharts have been included to help with the understanding of computer programs, numerical models, system analysis and flight performance. The following material is made available to readers:

- Computer code FLIGHT (demo version)
- Computer code Prop/FLIGHT (demo version)
- Computer code SFLIGHT (demo version)
- All charts and figures in any suitable graphical format

Separate technical documents will be issued to the readers wishing to work with these computer models.

Dr. Z. Mohammed-Kassim, my long-time associate, has actively contributed to the work on aircraft noise and to considerable code debugging. My doctoral student Nicholas Bojdo took great care in reading some chapters. I am indebted to my editor, Peter Gordon, who has been enthusiastic about my work from the beginning of the project to the end. The editorial and production work was efficiently managed by Peggy Rote at Aptara, Inc.

Finally, I thank my wife, Susan, for having the patience to tolerate my late nights at the desk, especially when I reached the tunnel phase of my work, that is, when I thought the book was finished but in fact there was no end in sight. A sabbatical leave from the University has allowed me to step up my efforts. I am grateful to the University, and the School, for the opportunity they have given me.
Nomenclature

Organisations

Below is a list of organisations that publish regularly documents (technical reports, papers, journals, regulations) as well as more general information of aviation.

AAIB Air Accidents Investigation Branch, United Kingdom (www.aaib.gov.uk)
AIAA American Institute of Aeronautics & Astronautics (www.aiaa.org)
ANSI American National Standards Institute (www.ansi.org)
ASTM American Society for Testing and Materials (www.astm.org)
BTS Bureau of Transportation Statistics, USA (www.bts.gov)
CAA Civil Aviation Authority (www.caa.co.uk)
EASA European Aviation Safety Agency (www.easa.eu.int)
ESDU Engineering Data Unit (www.esdu.com)
FAA Federal Aviation Administration (www.faa.gov)
FSF Flight Safety Foundation (www.flightsafety.org)
IATA International Air Transport Association (www.iata.org)
ICAO International Civil Aviation Organisation (www.icao.int)
IPCC Inter-governmental Panel for Climate Change (www.ipcc.ch)
Jane’s Jane’s Information Systems (www.janes.com)
MIL Military Standards (www.mil-standards.com)
NASA National Administration for Space and Aeronautics (www.nasa.gov)
NATO Advisory Group, Aerospace Research & Development (www.rta.nato.int)
NATS National Air Traffic System, United Kingdom (www.nats.co.uk)
NTSB National Transportation Safety Board, United States (www.ntsb.gov)
RAeS The Royal Aeronautical Society (www.aerosociety.org)
SAE Society of Automotive Engineers (www.sae.org)
SAWE Society of Allied Weight Engineers (www.sawe.org)

Acronyms Used in This Book

ACT Additional Centre Tank
AEO All Engines Operating
AF Activity Factor
Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APU</td>
<td>Auxiliary Power Unit</td>
</tr>
<tr>
<td>ASDA</td>
<td>Accelerate-Stop Distance Available</td>
</tr>
<tr>
<td>ASI</td>
<td>Air Speed Indicator</td>
</tr>
<tr>
<td>ASK</td>
<td>Available Seat per Kilometre</td>
</tr>
<tr>
<td>ATC</td>
<td>Air Traffic Control</td>
</tr>
<tr>
<td>AUW</td>
<td>All-Up Weight</td>
</tr>
<tr>
<td>BFL</td>
<td>Balanced Field Length</td>
</tr>
<tr>
<td>BPR</td>
<td>By-pass Ratio</td>
</tr>
<tr>
<td>BRGW</td>
<td>Brake-Release Gross Weight</td>
</tr>
<tr>
<td>CAS</td>
<td>Calibrated Air Speed</td>
</tr>
<tr>
<td>CASK</td>
<td>Cost per Available Seat per Kilometre</td>
</tr>
<tr>
<td>CDA</td>
<td>Continuous Descent Approach</td>
</tr>
<tr>
<td>CG</td>
<td>Centre of Gravity</td>
</tr>
<tr>
<td>CTOL</td>
<td>Conventional Take-off and Landing</td>
</tr>
<tr>
<td>DOC</td>
<td>Direct Operating Costs</td>
</tr>
<tr>
<td>DOCG</td>
<td>Dry Operating Centre of Gravity</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>DOW</td>
<td>Dry Operating Weight</td>
</tr>
<tr>
<td>EAS</td>
<td>Equivalent Air Speed</td>
</tr>
<tr>
<td>EBF</td>
<td>Externally Blown Flap</td>
</tr>
<tr>
<td>ECS</td>
<td>Environmental Conditioning System</td>
</tr>
<tr>
<td>EGT</td>
<td>Exhaust Gas Temperature</td>
</tr>
<tr>
<td>EPNdB</td>
<td>Effective Perceived Noise, in dB</td>
</tr>
<tr>
<td>EPNL</td>
<td>Effective Perceived Noise Level</td>
</tr>
<tr>
<td>ETOPS</td>
<td>Extended Twin-Engine OPerationS</td>
</tr>
<tr>
<td>FADEC</td>
<td>Full Authority Digital Engine Control</td>
</tr>
<tr>
<td>FCA</td>
<td>Final Cruise Altitude</td>
</tr>
<tr>
<td>FCOM</td>
<td>Flight Crew Operating Manual</td>
</tr>
<tr>
<td>FDR</td>
<td>Flight Data Recorder</td>
</tr>
<tr>
<td>FL</td>
<td>Fuselage Line; Flight Level</td>
</tr>
<tr>
<td>FLS</td>
<td>Flight Level Separation</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPU</td>
<td>Ground Power Unit</td>
</tr>
<tr>
<td>GRW</td>
<td>Gross Ramp Weight</td>
</tr>
<tr>
<td>GTOW</td>
<td>Gross Take-off Weight</td>
</tr>
<tr>
<td>IAS</td>
<td>Indicated Air Speed</td>
</tr>
<tr>
<td>ICA</td>
<td>Initial Cruise Altitude</td>
</tr>
<tr>
<td>ICW</td>
<td>Initial Cruise Weight</td>
</tr>
<tr>
<td>IDA</td>
<td>Initial Descent Altitude</td>
</tr>
<tr>
<td>IGE</td>
<td>In Ground Effect</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>ISA</td>
<td>International Standard Atmosphere</td>
</tr>
<tr>
<td>KCAS</td>
<td>Calibrated Air Speed in knots</td>
</tr>
<tr>
<td>KEAS</td>
<td>Equivalent Air Speed in knots</td>
</tr>
<tr>
<td>KIAS</td>
<td>Indicated Air Speed in knots</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>KTAS</td>
<td>True Air Speed in knots</td>
</tr>
<tr>
<td>LRM</td>
<td>Long-Range Mach number</td>
</tr>
<tr>
<td>MAC</td>
<td>Mean Aerodynamic Chord</td>
</tr>
<tr>
<td>MBGW</td>
<td>Maximum Brake-Release Weight</td>
</tr>
<tr>
<td>MCP</td>
<td>Maximum Continuous Power</td>
</tr>
<tr>
<td>MEW</td>
<td>Manufacturer's Empty Weight</td>
</tr>
<tr>
<td>MIL</td>
<td>Military Standards (USA)</td>
</tr>
<tr>
<td>MLW</td>
<td>Maximum Landing Weight</td>
</tr>
<tr>
<td>MRM</td>
<td>Maximum-Range Mach number</td>
</tr>
<tr>
<td>MRW</td>
<td>Maximum Ramp Weight</td>
</tr>
<tr>
<td>MSP</td>
<td>Maximum Structural Payload</td>
</tr>
<tr>
<td>MTOP</td>
<td>Maximum Take-off Power</td>
</tr>
<tr>
<td>MTOW</td>
<td>Maximum Take-off Weight</td>
</tr>
<tr>
<td>MZFW</td>
<td>Maximum Zero-Fuel Weight</td>
</tr>
<tr>
<td>NADP</td>
<td>Noise Abatement Departure Procedure</td>
</tr>
<tr>
<td>OASPL</td>
<td>Overall Sound Pressure Level</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>ODE</td>
<td>Ordinary Differential Equation</td>
</tr>
<tr>
<td>OEI</td>
<td>One Engine Inoperative</td>
</tr>
<tr>
<td>OEW</td>
<td>Operating Empty Weight</td>
</tr>
<tr>
<td>OGE</td>
<td>Out of Ground Effect</td>
</tr>
<tr>
<td>OPR</td>
<td>Overall Pressure Ratio</td>
</tr>
<tr>
<td>PAX</td>
<td>Passengers</td>
</tr>
<tr>
<td>PNL</td>
<td>Perceived Noise Level</td>
</tr>
<tr>
<td>PNLT</td>
<td>Perceived Noise Level, Tone Corrected</td>
</tr>
<tr>
<td>PWL</td>
<td>One-third octave band Power Level</td>
</tr>
<tr>
<td>SAR</td>
<td>Specific Air Range</td>
</tr>
<tr>
<td>SAT</td>
<td>Static Air Temperature</td>
</tr>
<tr>
<td>SEL</td>
<td>Sound Exposure Level</td>
</tr>
<tr>
<td>SEP</td>
<td>Specific Excess Power</td>
</tr>
<tr>
<td>SFC</td>
<td>Specific Fuel Consumption</td>
</tr>
<tr>
<td>SHP</td>
<td>Shaft Horse Power</td>
</tr>
<tr>
<td>SI</td>
<td>International Units System</td>
</tr>
<tr>
<td>S/L</td>
<td>Sea Level</td>
</tr>
<tr>
<td>SPL</td>
<td>Sound Pressure Level</td>
</tr>
<tr>
<td>STOL</td>
<td>Short Take-off and Landing</td>
</tr>
<tr>
<td>TAS</td>
<td>True Air Speed</td>
</tr>
<tr>
<td>TAT</td>
<td>Total Air Temperature</td>
</tr>
<tr>
<td>TMA</td>
<td>Terminal Manoeuvre Area</td>
</tr>
<tr>
<td>TOCG</td>
<td>Take-off Centre of Gravity</td>
</tr>
<tr>
<td>TOD</td>
<td>Top Of Descent</td>
</tr>
<tr>
<td>TODA</td>
<td>Take-off Distance Available</td>
</tr>
<tr>
<td>TODR</td>
<td>Take-Off Distance Required</td>
</tr>
<tr>
<td>TOGA</td>
<td>Take-off and Go-Around</td>
</tr>
<tr>
<td>TORA</td>
<td>Take-off Distance Required</td>
</tr>
<tr>
<td>TORR</td>
<td>Take-Off Run Required</td>
</tr>
</tbody>
</table>
Nomenclature

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOW</td>
<td>Take-off Weight</td>
</tr>
<tr>
<td>TSFC</td>
<td>Thrust-Specific Fuel Consumption</td>
</tr>
<tr>
<td>ULD</td>
<td>Unit Load Device</td>
</tr>
<tr>
<td>VMC</td>
<td>Minimum Control Speed</td>
</tr>
<tr>
<td>VMCA</td>
<td>Minimum Control Speed in Air</td>
</tr>
<tr>
<td>VMGC</td>
<td>Minimum Control Speed on the Ground</td>
</tr>
<tr>
<td>VMO</td>
<td>Maximum Operating Speed</td>
</tr>
<tr>
<td>VNE</td>
<td>Velocity Not to Exceed</td>
</tr>
<tr>
<td>WAT</td>
<td>Weight-Altitude-Temperature</td>
</tr>
<tr>
<td>WBM</td>
<td>Weight and Balance Manual</td>
</tr>
<tr>
<td>ZFCG</td>
<td>Zero-Fuel Centre of Gravity</td>
</tr>
<tr>
<td>ZFW</td>
<td>Zero-Fuel Weight</td>
</tr>
</tbody>
</table>

The U.S. Department of Defense and NATO publish a dictionary of acronyms and aviation jargon. A detailed list of symbols follows each chapter.
Technology Warning

This book makes reference to real flight vehicles in realistic flight conditions. The data used to model these vehicles have been extracted, elaborated, interpolated or otherwise inferred from documents available in the public domain. These documents are either published by the manufacturer or the operators, or both. They are supplemented with official data published by several aviation authorities at the national and international level. Many of these documents are freely available to the public in electronic format from the manufacturers, through their websites, or the websites of their customers, or by third parties. No commercial, sensitive or restricted data have been disclosed anywhere. All sources have been cited when appropriate. There is no implication that the data refer to any particular aircraft owned or operated by any organisation. The flight performance shown is often validated, but sometimes it is not. Whenever figures or tables report the term “simulated” or “validated”, they refer to simulations carried out with the comprehensive performance code FLIGHT and its related software technology (available from the author).

Readers should be made aware that the statements made in this book are the author’s own. Readers should use judgement before making technical, commercial, military, marketing or business decisions. The author cannot take responsibility for any action resulting in damage, accident or loss, as a consequence of statements made in this book. None of the graphs, figures and tables shown in this book can be used to make a final judgement on any airplane, any manufacturer, any flight, any service or any design. Use of the graphs for flight planning is prohibited. If you are in doubt, please consult the author, or use the performance codes from the aircraft manufacturers.