An Introduction to Celestial Mechanics

This accessible text on classical celestial mechanics—the principles governing the motions of bodies in the solar system—provides a clear and concise treatment of virtually all the major features of solar system dynamics. Building on advanced topics in classical mechanics, such as rigid body rotation, Lagrangian mechanics, and orbital perturbation theory, this text has been written for well-prepared undergraduates and beginning graduate students in astronomy, physics, mathematics, and related fields. Specific topics covered include Keplerian orbits; the perihelion precession of the planets; tidal interactions among the Earth, Moon, and Sun; the Roche radius; the stability of Lagrange points in the three-body problem; and lunar motion. More than 100 exercises allow students to gauge their understanding; a solutions manual is available to instructors. Suitable for a first course in celestial mechanics, this text is the ideal bridge to higher-level treatments.

Richard Fitzpatrick is professor of physics at the University of Texas at Austin, where he has been a faculty member since 1994. He earned his MA in physics at the University of Cambridge and his DPhil in astronomy at the University of Sussex. He is a longstanding Fellow of the Royal Astronomical Society and the American Physical Society and author of *Maxwell's Equations and the Principles of Electromagnetism* (2008).

Cambridge University Press 978-1-107-02381-9 - An Introduction to Celestial Mechanics Richard Fitzpatrick Frontmatter More information Cambridge University Press 978-1-107-02381-9 - An Introduction to Celestial Mechanics Richard Fitzpatrick Frontmatter <u>More information</u>

An Introduction to Celestial Mechanics

RICHARD FITZPATRICK

University of Texas at Austin

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9781107023819

© Richard Fitzpatrick 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Fitzpatrick, Richard, 1963– An introduction to celestial mechanics / Richard Fitzpatrick. p. cm. Includes bibliographical references and index. ISBN 978-1-107-02381-9 (hardback) 1. Celestial mechanics. I. Title. QB351.F565 2012 521–dc23 2012000780

ISBN 978-1-107-02381-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Pre	face		<i>page</i> ix		
1	Newtonian mechanics				
	1.1	Introduction	1		
	1.2	Newton's laws of motion	2		
	1.3	Newton's first law of motion	2		
	1.4	Newton's second law of motion	5		
	1.5	Newton's third law of motion	7		
	1.6	Nonisolated systems	10		
	1.7	Motion in one-dimensional potential	12		
	1.8	Simple harmonic motion	15		
	1.9	Two-body problem	17		
	Exer	cises	18		
2	Newt	onian gravity	22		
	2.1	Introduction	22		
	2.2	Gravitational potential	22		
	2.3	Gravitational potential energy	24		
	2.4	Axially symmetric mass distributions	25		
	2.5	Potential due to a uniform sphere	28		
	2.6	Potential outside a uniform spheroid	29		
	2.7	Potential due to a uniform ring	33		
	Exercises		34		
3	Keple	erian orbits	38		
	3.1	Introduction	38		
	3.2	Kepler's laws	38		
	3.3	Conservation laws	39		
	3.4	Plane polar coordinates	39		
	3.5	Kepler's second law	41		
	3.6	Kepler's first law	42		
	3.7	Kepler's third law	43		
	3.8	Orbital parameters	43		
	3.9	Orbital energies	44		
	3.10	Transfer orbits	45		
	3.11	Elliptical orbits	46		
	3.12	Orbital elements	49		

۷

Cambridge University Press 978-1-107-02381-9 - An Introduction to Celestial Mechanics Richard Fitzpatrick Frontmatter More information

vi	Contents			
	3.1	3 Planetary orbits	52	
	3.1	4 Parabolic orbits	54	
	3.1	5 Hyperbolic orbits	55	
	3.1	6 Binary star systems	56	
	Ex	ercises	58	
	4 Orb	pits in central force fields	63	
	4.1	Introduction	63	
	4.2	2 Motion in a general central force field	63	
	4.3	8 Motion in a nearly circular orbit	64	
	4.4	Perihelion precession of planets	66	
	4.5	Perihelion precession of Mercury	67	
	Ex	ercises	69	
	5 Rot	tating reference frames	72	
	5.1	Introduction	72	
	5.2	2 Rotating reference frames	72	
	5.3	Centrifugal acceleration	73	
	5.4	Coriolis force	76	
	5.5	6 Rotational flattening	78	
	5.6	5 Tidal elongation	83	
	5.7	7 Tidal torques	89	
	5.8	B Roche radius	92	
	Ex	ercises	94	
	6 Lac	grangian mechanics	97	
	6.1	Introduction	97	
	6.2	2 Generalized coordinates	97	
	6.3	Generalized forces	98	
	6.4	Lagrange's equation	99	
	6.5	6 Generalized momenta	101	
	Ex	ercises	102	
	7 Ria	id body rotation	105	
	7.1	Introduction	105	
	7.2	2 Fundamental equations	105	
	7.3	8 Moment of inertia tensor	106	
	7.4	Rotational kinetic energy	107	
	7.5	Principal axes of rotation	108	
	7.6	Euler's equations	109	
	7.7	Euler angles	111	
	7.8	Free precession of the Earth	114	
	7.9	MacCullagh's formula	115	
	7.1	0 Forced precession and nutation of the Earth	118	

CAMBRIDGE

Cambridge University Press 978-1-107-02381-9 - An Introduction to Celestial Mechanics Richard Fitzpatrick Frontmatter More information

vii	Contents				
	7.11 Spin orbit coupling	127			
	7.11 Spin-orbit coupling 7.12 Cassini's laws	127			
	7.12 Cassill S laws Evercises	130			
		145			
	8 Three-body problem	147			
	8.1 Introduction	147			
	8.2 Circular restricted three-body problem	147			
	8.3 Jacobi integral	149			
	8.4 Tisserand criterion	149			
	8.5 Co-rotating frame	152			
	8.6 Lagrange points	155			
	8.7 Zero-velocity surfaces	158			
	8.8 Stability of Lagrange points	162			
	Exercises	167			
	9 Secular perturbation theory	172			
	9.1 Introduction	172			
	9.2 Evolution equations for a two-planet solar system	172			
	9.3 Secular evolution of planetary orbits	176			
	9.4 Secular evolution of asteroid orbits	187			
	9.5 Secular evolution of artificial satellite orbits	190			
	Exercises	194			
	10 Lunar motion				
	10.1 Introduction	197			
	10.2 Preliminary analysis	198			
	10.3 Lunar equations of motion	200			
	10.4 Unperturbed lunar motion	202			
	10.5 Perturbed lunar motion	204			
	10.6 Description of lunar motion	209			
	Exercises	213			
	Appendix A. Useful mathematics				
	A.1 Calculus	217			
	A.2 Series expansions	218			
	A.3 Trigonometric identities	218			
	A.4 Vector identities	220			
	A.5 Conservative fields	221			
	A.6 Rotational coordinate transformations	221			
	A.7 Precession	223			
	A.8 Curvilinear coordinates	223			
	A.9 Conic sections	225			
	A.10 Elliptic expansions	229			
	A.11 Matrix eigenvalue theory	231			

viii	Contents				
Appendix	x B Derivation of Lagrange planetary equations	234			
B.1	Introduction	234			
B.2	Preliminary analysis	235			
B.3	Lagrange brackets	236			
B.4	Transformation of Lagrange brackets	238			
B.5	Lagrange planetary equations	242			
B.6	Alternative forms of Lagrange planetary equations	244			
Appendix	x C Expansion of orbital evolution equations	247			
C.1	Introduction	247			
C.2	Expansion of Lagrange planetary equations	247			
C.3	Expansion of planetary disturbing functions	251			
Bibliogr	raphy	259			
Index		263			

Preface

The aim of this book is to bridge the considerable gap that exists between standard undergraduate mechanics texts, which rarely cover topics in celestial mechanics more advanced than two-body orbit theory, and graduate-level celestial mechanics texts, such as the well-known books by Moulton (1914), Brouwer and Clemence (1961), Danby (1992), Murray and Dermott (1999), and Roy (2005). The material presented here is intended to be intelligible to an advanced undergraduate or beginning graduate student with a firm grasp of multivariate integral and differential calculus, linear algebra, vector algebra, and vector calculus.

The book starts with a discussion of the fundamental concepts of Newtonian mechanics, as these are also the fundamental concepts of celestial mechanics. A number of more advanced topics in Newtonian mechanics that are needed to investigate the motions of celestial bodies (e.g., gravitational potential theory, motion in rotating reference frames, Lagrangian mechanics, Eulerian rigid body rotation theory) are also described in detail in the text. However, any discussion of the application of Hamiltonian mechanics, Hamilton-Jacobi theory, canonical variables, and action-angle variables to problems in celestial mechanics is left to more advanced texts (see, for instance, Goldstein, Poole, and Safko 2001).

Celestial mechanics (a term coined by Laplace in 1799) is the branch of astronomy that is concerned with the motions of celestial objects—in particular, the objects that make up the solar system-under the influence of gravity. The aim of celestial mechanics is to reconcile these motions with the predictions of Newtonian mechanics. Modern analytic celestial mechanics started in 1687 with the publication of the Principia by Isaac Newton (1643-1727) and was subsequently developed into a mature science by celebrated scientists such as Euler (1707-1783), Clairaut (1713-1765), D'Alembert (1717–1783), Lagrange (1736–1813), Laplace (1749–1827), and Gauss (1777–1855). This book is largely devoted to the study of the "classical" problems of celestial mechanics that were investigated by these scientists. These problems include the figure of the Earth; tidal interactions among the Earth, Moon, and Sun; the free and forced precession and nutation of the Earth; the three-body problem; the secular evolution of the solar system; the orbit of the Moon; and the axial rotation of the Moon. However, any discussion of the highly complex problems that arise in modern celestial mechanics, such as the mutual gravitational interaction between the various satellites of Jupiter and Saturn, the formation of the Kirkwood gaps, the dynamics of planetary rings, and the ultimate stability of the solar system, is again left to more advanced texts (see, in particular, Murray and Dermott 1999).

A number of topics, closely related to classical celestial mechanics, are not discussed in this book for the sake of brevity. The first of these is positional astronomy—the

ix

Cambridge University Press 978-1-107-02381-9 - An Introduction to Celestial Mechanics Richard Fitzpatrick Frontmatter <u>More information</u>

Х

Preface

branch of astronomy that is concerned with finding the positions of celestial objects in the Earth's sky at a particular instance in time. Interested readers are directed to Smart (1977). The second excluded topic is the development of numerical methods for the solution of problems in celestial mechanics. Interested readers are directed to Danby (1992). The third (mostly) excluded topic is astrodynamics: the application of Newtonian dynamics to the design and analysis of orbits for artificial satellites and space probes. Interested readers are directed to Bate, Mueller, and White (1977). The final excluded topic is the determination of the orbits of celestial objects from observational data. Interested readers are again directed to Danby (1992).