
1 Newtonianmechanics

1.1 Introduction

Newtonian mechanics is a mathematical model whose purpose is to account for the
motions of the various objects in the universe. The general principles of this model were
first enunciated by Sir Isaac Newton in a work titled Philosophiae Naturalis Principia
Mathematica (Mathematical Principles of Natural Philosophy). This work, which was
published in 1687, is nowadays more commonly referred to as the Principia.1

Until the beginning of the twentieth century, Newtonian mechanics was thought to
constitute a complete description of all types of motion occurring in the universe. We
now know that this is not the case. The modern view is that Newton’s model is only
an approximation that is valid under certain circumstances. The model breaks down
when the velocities of the objects under investigation approach the speed of light in a
vacuum, and must be modified in accordance with Einstein’s special theory of relativity.
The model also fails in regions of space that are sufficiently curved that the propositions
of Euclidean geometry do not hold to a good approximation, and must be augmented
by Einstein’s general theory of relativity. Finally, the model breaks down on atomic and
subatomic length scales, and must be replaced by quantum mechanics. In this book,
we shall (almost entirely) neglect relativistic and quantum effects. It follows that we
must restrict our investigations to the motions of large (compared with an atom), slow
(compared with the speed of light) objects moving in Euclidean space. Fortunately,
virtually all the motions encountered in conventional celestial mechanics fall into this
category.

Newton very deliberately modeled his approach in the Principia on that taken in
Euclid’s Elements. Indeed, Newton’s theory of motion has much in common with a
conventional axiomatic system, such as Euclidean geometry. Like all axiomatic sys-
tems, Newtonian mechanics starts from a set of terms that are undefined within the
system. In this case, the fundamental terms are mass, position, time, and force. It is
taken for granted that we understand what these terms mean, and, furthermore, that they
correspond to measurable quantities that can be ascribed to, or associated with, objects
in the world around us. In particular, it is assumed that the ideas of position in space,
distance in space, and position as a function of time in space are correctly described
by conventional Euclidean vector algebra and vector calculus. The next component
of an axiomatic system is a set of axioms. These are a set of unproven propositions,

1 An excellent discussion of the historical development of Newtonian mechanics, as well as the physical and
philosophical assumptions that underpin this theory, is given in Barbour 2001.
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2 Newtonian mechanics

involving the undefined terms, from which all other propositions in the system can be
derived via logic and mathematical analysis. In the present case, the axioms are called
Newton’s laws of motion and can be justified only via experimental observation. Note,
incidentally, that Newton’s laws, in their primitive form, are applicable only to point
objects (i.e., objects of negligible spatial extent). However, these laws can be applied to
extended objects by treating them as collections of point objects.

One difference between an axiomatic system and a physical theory is that, in the
latter case, even if a given prediction has been shown to follow necessarily from the
axioms of the theory, it is still incumbent on us to test the prediction against experi-
mental observations. Lack of agreement might indicate faulty experimental data, faulty
application of the theory (for instance, in the case of Newtonian mechanics, there might
be forces at work that we have not identified), or, as a last resort, incorrectness of the
theory. Fortunately, Newtonian mechanics has been found to give predictions that are in
excellent agreement with experimental observations in all situations in which it would
be expected to hold.

In the following, it is assumed that we know how to set up a rigid Cartesian frame of
reference and how to measure the positions of point objects as functions of time within
that frame. It is also taken for granted that we have some basic familiarity with the laws
of mechanics.

1.2 Newton’s laws of motion

Newton’s laws of motion, in the rather obscure language of the Principia, take the fol-
lowing form:

1. Every body continues in its state of rest, or uniform motion in a straight line, unless
compelled to change that state by forces impressed on it.

2. The change of motion (i.e., momentum) of an object is proportional to the force
impressed on it, and is made in the direction of the straight line in which the force is
impressed.

3. To every action there is always opposed an equal reaction; or, the mutual actions of
two bodies on each other are always equal, and directed to contrary parts.

Let us now examine how these laws can be applied to a system of point objects.

1.3 Newton’s first law of motion

Newton’s first law of motion essentially states that a point object subject to zero net
external force moves in a straight line with a constant speed (i.e., it does not accelerate).
However, this is true only in special frames of reference called inertial frames. Indeed,
we can think of Newton’s first law as the definition of an inertial frame: an inertial frame
of reference is one in which a point object subject to zero net external force moves in a
straight line with constant speed.
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3 1.3 Newton’s first law of motion
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Fig. 1.1 A Galilean coordinate transformation.

Suppose that we have found an inertial frame of reference. Let us set up a Cartesian
coordinate system in this frame. The motion of a point object can now be specified
by giving its position vector, r ≡ (x, y, z), with respect to the origin of the coordinate
system, as a function of time, t. Consider a second frame of reference moving with
some constant velocity u with respect to the first frame. Without loss of generality, we
can suppose that the Cartesian axes in the second frame are parallel to the corresponding
axes in the first frame, that u ≡ (u, 0, 0), and, finally, that the origins of the two frames
instantaneously coincide at t = 0. (See Figure 1.1.) Suppose that the position vector of
our point object is r′ ≡ (x′, y′, z′) in the second frame of reference. It is evident, from
Figure 1.1, that at any given time, t, the coordinates of the object in the two reference
frames satisfy

x′ = x − u t, (1.1)

y′ = y, (1.2)

and

z′ = z. (1.3)

This coordinate transformation was first discovered by Galileo Galilei (1564–1642), and
is nowadays known as a Galilean transformation in his honor.

By definition, the instantaneous velocity of the object in our first reference frame
is given by v = dr/dt ≡ (dx/dt, dy/dt, dz/dt), with an analogous expression for the
velocity, v′, in the second frame. It follows, from differentiation of Equations (1.1)–
(1.3) with respect to time, that the velocity components in the two frames satisfy

�′x = �x − u, (1.4)

�′y = �y, (1.5)
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4 Newtonian mechanics

and

�′z = �z. (1.6)

These equations can be written more succinctly as

v′ = v − u. (1.7)

Finally, by definition, the instantaneous acceleration of the object in our first refer-
ence frame is given by a = dv/dt ≡ (d�x/dt, d�y/dt, d�z/dt), with an analogous ex-
pression for the acceleration, a′, in the second frame. It follows, from differentiation of
Equations (1.4)–(1.6) with respect to time, that the acceleration components in the two
frames satisfy

a′x = ax, (1.8)

a′y = ay, (1.9)

and

a′z = az. (1.10)

These equations can be written more succinctly as

a′ = a. (1.11)

According to Equations (1.7) and (1.11), if an object is moving in a straight line with
a constant speed in our original inertial frame (i.e., if a = 0), then it also moves in a
(different) straight line with a (different) constant speed in the second frame of reference
(i.e., a′ = 0). Hence, we conclude that the second frame of reference is also an inertial
frame.

A simple extension of the preceding argument allows us to conclude that there is an
infinite number of different inertial frames moving with constant velocities with respect
to one another. Newton thought that one of these inertial frames was special and defined
an absolute standard of rest: that is, a static object in this frame was in a state of absolute
rest. However, Einstein showed that this is not the case. In fact, there is no absolute
standard of rest: in other words, all motion is relative—hence, the name relativity for
Einstein’s theory. Consequently, one inertial frame is just as good as another as far as
Newtonian mechanics is concerned.

But what happens if the second frame of reference accelerates with respect to the
first? In this case, it is not hard to see that Equation (1.11) generalizes to

a′ = a − du
dt
, (1.12)

where u(t) is the instantaneous velocity of the second frame with respect to the first.
According to this formula, if an object is moving in a straight line with a constant speed
in the first frame (i.e., if a = 0), then it does not move in a straight line with a constant
speed in the second frame (i.e., a′ � 0). Hence, if the first frame is an inertial frame,
then the second is not.
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5 1.4 Newton’s second law of motion

A simple extension of the preceding argument allows us to conclude that any frame
of reference that accelerates with respect to a given inertial frame is not itself an inertial
frame.

For most practical purposes, when studying the motions of objects close to the Earth’s
surface, a reference frame that is fixed with respect to this surface is approximately in-
ertial. However, if the trajectory of a projectile within such a frame is measured to high
precision, then it will be found to deviate slightly from the predictions of Newtonian
mechanics. (See Chapter 5.) This deviation is due to the fact that the Earth is rotating,
and its surface is therefore accelerating toward its axis of rotation. When studying the
motions of objects in orbit around the Earth, a reference frame whose origin is the center
of the Earth (or, to be more exact, the center of mass of the Earth–Moon system), and
whose coordinate axes are fixed with respect to distant stars, is approximately inertial.
However, if such orbits are measured to extremely high precision, then they will again
be found to deviate very slightly from the predictions of Newtonian mechanics. In this
case, the deviation is due to the Earth’s orbital motion about the Sun. When studying the
orbits of the planets in the solar system, a reference frame whose origin is the center of
the Sun (or, to be more exact, the center of mass of the solar system), and whose coor-
dinate axes are fixed with respect to distant stars, is approximately inertial. In this case,
any deviations of the orbits from the predictions of Newtonian mechanics due to the
orbital motion of the Sun about the galactic center are far too small to be measurable. It
should be noted that it is impossible to identify an absolute inertial frame—the best ap-
proximation to such a frame would be one in which the cosmic microwave background
appears to be (approximately) isotropic. However, for a given dynamic problem, it is al-
ways possible to identify an approximate inertial frame. Furthermore, any deviations of
such a frame from a true inertial frame can be incorporated into the framework of New-
tonian mechanics via the introduction of so-called fictitious forces. (See Chapter 5.)

1.4 Newton’s second law of motion

Newton’s second law of motion essentially states that if a point object is subject to an
external force, f, then its equation of motion is given by

dp
dt
= f, (1.13)

where the momentum, p, is the product of the object’s inertial mass, m, and its velocity,
v. If m is not a function of time, then Equation (1.13) reduces to the familiar equation

m
dv
dt
= f. (1.14)

This equation is valid only in an inertial frame. Clearly, the inertial mass of an object
measures its reluctance to deviate from its preferred state of uniform motion in a straight
line (in an inertial frame). Of course, the preceding equation of motion can be solved
only if we have an independent expression for the force, f (i.e., a law of force). Let us
suppose that this is the case.
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6 Newtonian mechanics

An important corollary of Newton’s second law is that force is a vector quantity. This
must be the case, as the law equates force to the product of a scalar (mass) and a vector
(acceleration).2 Note that acceleration is obviously a vector because it is directly related
to displacement, which is the prototype of all vectors. One consequence of force being
a vector is that two forces, f1 and f2, both acting at a given point, have the same effect as
a single force, f = f1 + f2, acting at the same point, where the summation is performed
according to the laws of vector addition. Likewise, a single force, f, acting at a given
point, has the same effect as two forces, f1 and f2, acting at the same point, provided that
f1 + f2 = f. This method of combining and splitting forces is known as the resolution of
forces; it lies at the heart of many calculations in Newtonian mechanics.

Taking the scalar product of Equation (1.14) with the velocity, v, we obtain

m v· dv
dt
=

m
2

d(v · v)
dt

=
m
2

d�2

dt
= f · v. (1.15)

This can be written
dK
dt
= f · v, (1.16)

where

K =
1
2

m �2. (1.17)

The right-hand side of Equation (1.16) represents the rate at which the force does work
on the object—that is, the rate at which the force transfers energy to the object. The
quantity K represents the energy that the object possesses by virtue of its motion. This
type of energy is generally known as kinetic energy. Thus, Equation (1.16) states that
any work done on a point object by an external force goes to increase the object’s kinetic
energy.

Suppose that under the action of the force, f, our object moves from point P at time
t1 to point Q at time t2. The net change in the object’s kinetic energy is obtained by
integrating Equation (1.16):

ΔK =
∫ t2

t1

f · v dt =
∫ Q

P
f · dr, (1.18)

because v = dr/dt. Here, dr is an element of the object’s path between points P and Q,
and the integral in r represents the net work done by the force as the object moves along
the path from P to Q.

As is well known, there are basically two kinds of forces in nature: first, those for
which line integrals of the type

∫
Q
P f · dr depend on the end points but not on the path

taken between these points; second, those for which line integrals of the type
∫

Q
P f · dr

depend both on the end points and the path taken between these points. The first kind of
force is termed conservative, whereas the second kind is termed non-conservative. It can
be demonstrated that if the line integral

∫ Q

P
f ·dr is path independent, for all choices of P

and Q, then the force f can be written as the gradient of a scalar field. (See Section A.5.)

2 A scalar is a physical quantity that is invariant under rotation of the coordinate axes. A vector is a physical
quantity that transforms in an analogous manner to a displacement under rotation of the coordinate axes.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02381-9 - An Introduction to Celestial Mechanics
Richard Fitzpatrick
Excerpt
More information

http://www.cambridge.org/9781107023819
http://www.cambridge.org
http://www.cambridge.org


7 1.5 Newton’s third law of motion

In other words, all conservative forces satisfy

f(r) = −∇U (1.19)

for some scalar field U(r). [Incidentally, mathematicians, as opposed to physicists and
astronomers, usually write f (r) = +∇U.] Note that∫ Q

P
∇U · dr ≡ ΔU = U(Q) − U(P), (1.20)

irrespective of the path taken between P and Q. Hence, it follows from Equation (1.18)
that

ΔK = −ΔU (1.21)

for conservative forces. Another way of writing this is

E = K + U = constant. (1.22)

Of course, we recognize Equation (1.22) as an energy conservation equation: E is the
object’s total energy, which is conserved; K is the energy the object has by virtue of
its motion, otherwise known as its kinetic energy; and U is the energy the object has
by virtue of its position, otherwise known as its potential energy. Note, however, that
we can write energy conservation equations only for conservative forces. Gravity is
an obvious example of such a force. Incidentally, potential energy is undefined to an
arbitrary additive constant. In fact, it is only the difference in potential energy between
different points in space that is well defined.

1.5 Newton’s third law of motion

Consider a system of N mutually interacting point objects. Let the ith object, whose
mass is mi, be located at position vector ri. Suppose that this object exerts a force f ji

on the jth object. Likewise, suppose that the jth object exerts a force fi j on the ith
object. Newton’s third law of motion essentially states that these two forces are equal
and opposite, irrespective of their nature. In other words,

fi j = −f ji. (1.23)

(See Figure 1.2.) One corollary of Newton’s third law is that an object cannot exert a
force on itself. Another corollary is that all forces in the universe have corresponding
reactions. The only exceptions to this rule are the fictitious forces that arise in non-
inertial reference frames (e.g., the centrifugal and Coriolis forces that appear in rotating
reference frames—see Chapter 5). Fictitious forces do not generally possess reactions.

Newton’s third law implies action at a distance. In other words, if the force that object
i exerts on object j suddenly changes, then Newton’s third law demands that there must
be an immediate change in the force that object j exerts on object i. Moreover, this must
be true irrespective of the distance between the two objects. However, we now know
that Einstein’s special theory of relativity forbids information from traveling through
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8 Newtonian mechanics
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Fig. 1.2 Newton’s third law.

the universe faster than the velocity of light in vacuum. Hence, action at a distance is
also forbidden. In other words, if the force that object i exerts on object j suddenly
changes, then there must be a time delay, which is at least as long as it takes a light ray
to propagate between the two objects, before the force that object j exerts on object i can
respond. Of course, this means that Newton’s third law is not, strictly speaking, correct.
However, as long as we restrict our investigations to the motions of dynamical systems
over timescales that are long compared with the time required for light rays to traverse
these systems, Newton’s third law can be regarded as being approximately correct.

In an inertial frame, Newton’s second law of motion applied to the ith object yields

mi
d2ri

dt2
=

j�i∑
j=1,N

fi j. (1.24)

Note that the summation on the right-hand side of this equation excludes the case j = i,
as the ith object cannot exert a force on itself. Let us now take this equation and sum it
over all objects. We obtain ∑

i=1,N

mi
d2ri

dt2
=

j�i∑
i, j=1,N

fi j. (1.25)

Consider the sum over forces on the right-hand side of the preceding equation. Each
element of this sum—fi j, say—can be paired with another element—f ji, in this case—
that is equal and opposite, according to Newton’s third law. In other words, the elements
of the sum all cancel out in pairs. Thus, the net value of the sum is zero. It follows that
Equation (1.25) can be written

M
d2rcm

dt2
= 0, (1.26)

where M =
∑

i=1,N mi is the total mass. The quantity rcm is the vector displacement of
the center of mass of the system, which is an imaginary point whose coordinates are the
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9 1.5 Newton’s third law of motion

mass weighted averages of the coordinates of the objects that constitute the system:

rcm =

∑
i=1,N mi ri∑

i=1,N mi
. (1.27)

According to Equation (1.26), the center of mass of the system moves in a uniform
straight line, in accordance with Newton’s first law of motion, irrespective of the nature
of the forces acting between the various components of the system.

Now, if the center of mass moves in a uniform straight line, then the center of mass
velocity,

drcm

dt
=

∑
i=1,N mi dri/dt∑

i=1,N mi
, (1.28)

is a constant of the motion. However, the momentum of the ith object takes the form
pi = mi dri/dt. Hence, the total momentum of the system is written

P =
∑

i=1,N

mi
dri

dt
. (1.29)

A comparison of Equations (1.28) and (1.29) suggests that P is also a constant of the
motion. In other words, the total momentum of the system is a conserved quantity,
irrespective of the nature of the forces acting between the various components of the
system. This result (which holds only if there is zero net external force acting on the
system) is a direct consequence of Newton’s third law of motion.

Taking the vector product of Equation (1.24) with the position vector ri, we obtain

mi ri × d2ri

dt2
=

j�i∑
j=1,N

ri × fi j. (1.30)

The right-hand side of the this equation is the net torque about the origin that acts on
object i as a result of the forces exerted on it by the other objects. It is easily seen that

mi ri × d2ri

dt2
=

d
dt

(
mi ri × dri

dt

)
=

dli
dt
, (1.31)

where

li = mi ri × dri

dt
(1.32)

is the angular momentum of the ith object about the origin of our coordinate system.
Moreover, the total angular momentum of the system (about the origin) takes the form

L =
∑

i=1,N

li. (1.33)

Hence, summing Equation (1.30) over all particles, we obtain

dL
dt
=

i� j∑
i, j=1,N

ri × fi j. (1.34)

Consider the sum on the right-hand side of Equation (1.34). A general term, ri × fi j,
in this sum can always be paired with a matching term, r j × f ji, in which the indices
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10 Newtonian mechanics

f ij
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Fig. 1.3 Central forces.

have been swapped. Making use of Equation (1.23), we can write the sum of a general
matched pair as

ri × fi j + r j × f ji = (ri − r j) × fi j. (1.35)

Let us assume that the forces acting between the various components of the system are
central in nature, so that fi j is parallel to ri − r j. In other words, the force exerted on
object j by object i either points directly toward, or directly away from, object i, and
vice versa. (See Figure 1.3.) This is a reasonable assumption, as virtually all the forces
that we encounter in celestial mechanics are of this type (e.g., gravity). It follows that
if the forces are central, then the vector product on the right-hand side of the above
expression is zero. We conclude that

ri × fi j + r j × f ji = 0 (1.36)

for all values of i and j. Thus, the sum on the right-hand side of Equation (1.34) is zero
for any kind of central force. We are left with

dL
dt
= 0. (1.37)

In other words, the total angular momentum of the system is a conserved quantity,
provided that the different components of the system interact via central forces (and
there is zero net external torque acting on the system).

1.6 Nonisolated systems

Up to now, we have considered only isolated dynamical systems, in which all the forces
acting on the system originate from within the system itself. Let us now generalize
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