The Handbook on Systemic Risk, written by experts in the field, provides researchers with an introduction to the multi-faceted aspects of systemic risks facing the global financial markets. The Handbook explores the multi-disciplinary approaches to analyzing this risk, the data requirements for further research, and the recommendations being made to avert financial crisis. The Handbook is designed to encourage new researchers to investigate a topic with immense societal implications as well as to provide, for those already actively involved within their own academic discipline, an introduction to the research being undertaken in other disciplines. Each chapter in the Handbook will provide researchers with a superior introduction to the field and with references to more advanced research articles. It is the hope of the editors that this Handbook will stimulate greater interdisciplinary academic research on the critically important topic of systemic risk in the global financial markets.

JEAN-PIERRE FOUQUE is Professor and Director of the Center for Research in Financial Mathematics and Statistics at the University of California, Santa Barbara.

JOSEPH A. LANGSAM spent 25 years at Morgan Stanley, where he collaborated with academic experts in mathematics and finance to develop and promote the derivative valuation and risk management models that are necessary for modern finance. Joseph Langsam is a Policy Fellow in the Center for Financial Policy, Robert H. Smith School of Business, University of Maryland, College Park.
HANDBOOK ON SYSTEMIC RISK

Edited by

JEAN-PIERRE FOUQUE
University of California, Santa Barbara

JOSEPH A. LANGSAM
University of Maryland, College Park
Contents

Contributors ... xv
Introduction .. xx

PART I: DATA: THE PREREQUISITE FOR MANAGING SYSTEMIC RISK 1
Data for Systemic Risk ... 3
H.V. Jagadish

1 Systemic Risk Information Requirements: Current Environment, Needs, and Approaches for Development .. 9
Edward T. Hida II
1.1 Introduction ... 9
1.2 Purpose .. 10
1.3 Overview of types of systemic risk information required 10
1.4 Overview of the financial landscape 14
1.5 Observations on the state of financial data within financial institutions ... 24
1.6 The challenge ahead for systemic risk information collection 28
1.7 Paths for collection of systemic risk information 30
1.8 Conclusions ... 32
Bibliography ... 36

2 Aligning Models and Data for Systemic Risk Analysis 37
Roger M. Stein
2.1 Introduction .. 37
2.2 Data aggregation and statistical inference: at what level of detail should data be collected? 42
2.3 Data linkage ... 45
Contents

2.4 Aligning data and models .. 51
2.5 A brief comment on confidentiality, anonymization and the role of consortia .. 56
2.6 Conclusion .. 60
Bibliography .. 62

3 Applying FpML

Andrew Jacobs and Marc Gratacos

3.1 Introduction .. 66
3.2 Inside FpML .. 72
3.3 Application to systemic risk ... 87
3.4 Conclusions .. 91
Bibliography .. 92

4 Data Integration for Systemic Risk in the Financial System

Arnon Rosenthal and Len Seligman

4.1 The systemic risk data integration challenge 93
4.2 Data integration task model ... 100
4.3 Standards for data exchange .. 102
4.4 Tools for reconciling heterogeneity 110
4.5 Research questions ... 115
4.6 Conclusions .. 120
Bibliography .. 121

5 Semantics in Systemic Risk Management

Mike Atkin and Mike Bennett

5.1 Dealing with semantics .. 125
5.2 Creating an ontology ... 132
5.3 Semantic technology applications 142
5.4 Operational data .. 144
5.5 Summary .. 145
5.6 The financial industry business ontology 147
5.7 FIBO and systemic risk .. 153
Bibliography .. 158

PART II: STATISTICS AND SYSTEMIC RISK

6 Statistics and Systemic Risk

John Liechty

6.1 Statistical and systemic risk .. 163
6 Statistical Assessments of Systemic Risk Measures 165
Carole Bernard, Eike Christian Brechmann and Claudia Czado
6.1 Introduction and background on systemic risk 165
6.2 CoVaR 167
6.3 Marginal Expected Shortfall 170
6.4 Other tail dependence measures 173
6.5 Conclusions & alternative systemic measure 176
Bibliography 178

7 Regime Switching Models and Risk Measurement Tools 180
John Liechty
7.1 Introduction 181
7.2 Using regime shifting models with historical data 182
7.3 Using forward-looking data 187
7.4 Conclusions 188
Bibliography 189

PART III: MEASURING AND REGULATING SYSTEMIC RISK 191
Measuring and Regulating Systemic Risk 193
Viral V. Acharya

8 Measuring Systemic Risk 196
Viral V. Acharya, Christian Brownlees, Robert Engle,
Farhang Farazmand, and Matthew Richardson
8.1 The Dodd–Frank Wall Street reform and Consumer Protection Act 198
8.2 Evaluation of the Dodd–Frank Act 203
8.3 NYU Stern systemic risk rankings 208
Bibliography 224

9 Taxing Systemic Risk 226
Viral V. Acharya, Lasse Pedersen, Thomas Philippon, and Matthew Richardson
9.1 Systemic risk and the financial crisis of 2007 to 2009 226
9.2 Regulating systemic risk 229
9.3 The Dodd–Frank Wall Street reforms and Consumer Protection Act of 2010 235
9.4 A tax on systemic risk 241
9.5 Summary 244
Bibliography 244
Contents

10 Analyzing Systemic Risk of the European Banking Sector
Viral V. Acharya and Sascha Steffen

10.1 Introduction 247
10.2 Methodology – measuring systemic risk 249
10.3 Data and summary statistics 251
10.4 Measuring systemic risk of European banks 254
10.5 Responses to the financial crisis of 2007–2009 266
10.6 After the crisis is before the crisis – the sovereign debt crisis of 2010 270
10.7 Conclusion 278

Bibliography 281

PART IV: NETWORKS
283

Networks: Introduction

Rama Cont

11 Network Models and Systemic Risk Assessment
Helmut Elsinger, Alfred Lehar and Martin Summer

11.1 Introduction 287
11.2 A network model of interbank exposures and contagion risk 288
11.3 Estimating network exposures 291
11.4 Creating loss scenarios 294
11.5 Clearing in the interbank market 297
11.6 Empirical findings 299
11.7 Extensions 302

Bibliography 303

12 Strategic Interactions on Financial Networks for the Analysis of Systemic Risk
Ethan Cohen-Cole, Andrei Kirilenko and Eleonora Patacchini

12.1 Financial networks and systemic risk 306
12.2 Diffusion-like processes over networks 309
12.3 An empirical application: the CME market 316
12.4 Conclusions and policy implications 323

Bibliography 324

13 Network Structure and Systemic Risk in Banking Systems
Rama Cont, Amal Moussa and Edson B. Santos

13.1 Introduction 327
13.2 The network structure of banking systems 333
13.3 Systemic risk and default contagion 345
Contents ix

13.4 Is default contagion a significant source of systemic risk? 351
13.5 What makes an institution systemically important? 355
13.6 Does one size fit all? The case for targeted capital requirements 361
Bibliography 365

PART V: SYSTEMIC RISK AND MATHEMATICAL FINANCE 369
Systemic Risk and Mathematical Finance 371
Ronnie Sircar

14 Firms, Banks and Households 372
L.C.G. Rogers and P. Zaczkowski
14.1 Introduction 372
14.2 Modelling assumptions 374
14.3 Summary 385
14.4 Examples 387
14.5 Numerical results 390
Bibliography 400

15 An Agent-Based Computational Model for Bank Formation and Interbank Networks 401
Matheus R. Grasselli and Omneia R. H. Ismail
15.1 Introduction 401
15.2 The pre-banking society 404
15.3 Introducing banks 410
15.4 Interbank market 416
15.5 Communities of correlated preferences 423
15.6 Conclusions and further directions 428
Bibliography 430

16 Diversification in Financial Networks may Increase Systemic Risk 432
Josselin Garnier, George Papanicolaou and Tzu-Wei Yang
16.1 Introduction 432
16.2 A bistable mean-field model for systemic risk 433
16.3 Review of some models for systemic risk 439
16.4 Summary and conclusion 442
Bibliography 442

17 Systemic Risk Illustrated 444
Jean-Pierre Fouque and Li-Hsien Sun
17.1 Introduction 444
17.2 Stability illustrated by simulations 446
17.3 Mean-field limit 449
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>Large deviations and systemic risk</td>
<td>450</td>
</tr>
<tr>
<td>17.5</td>
<td>Conclusion</td>
<td>451</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>452</td>
</tr>
<tr>
<td>18</td>
<td>Financial Crisis and Contagion: A Dynamical Systems Approach</td>
<td>453</td>
</tr>
<tr>
<td>Youngna Choi and Raphael Douady</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>454</td>
</tr>
<tr>
<td>18.2</td>
<td>Assumptions on an economy</td>
<td>455</td>
</tr>
<tr>
<td>18.3</td>
<td>A nonlinear dynamic programming model</td>
<td>458</td>
</tr>
<tr>
<td>18.4</td>
<td>Market instability indicator</td>
<td>467</td>
</tr>
<tr>
<td>18.5</td>
<td>Financial crisis</td>
<td>468</td>
</tr>
<tr>
<td>18.6</td>
<td>Case studies and applications</td>
<td>473</td>
</tr>
<tr>
<td>18.7</td>
<td>Conclusion and further reading</td>
<td>477</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>PART VI: COUNTERPARTY RISK AND SYSTEMIC RISK</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td>Kay Giesecke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>484</td>
</tr>
<tr>
<td>19</td>
<td>Pricing and Mitigation of Counterparty Credit Exposures</td>
<td>485</td>
</tr>
<tr>
<td>Agostino Capponi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>485</td>
</tr>
<tr>
<td>19.2</td>
<td>Notation and definitions</td>
<td>488</td>
</tr>
<tr>
<td>19.3</td>
<td>Risk-neutral pricing of counterparty risk</td>
<td>491</td>
</tr>
<tr>
<td>19.4</td>
<td>Application to interest-rate and credit default swaps</td>
<td>496</td>
</tr>
<tr>
<td>19.5</td>
<td>Future trends in counterparty risk</td>
<td>506</td>
</tr>
<tr>
<td>19.6</td>
<td>Conclusions</td>
<td>508</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>509</td>
</tr>
<tr>
<td>20</td>
<td>Counterparty Contagion in Context: Contributions to Systemic Risk</td>
<td>512</td>
</tr>
<tr>
<td>Jeremy Staum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>512</td>
</tr>
<tr>
<td>20.2</td>
<td>Contagion</td>
<td>513</td>
</tr>
<tr>
<td>20.3</td>
<td>Models of counterparty contagion</td>
<td>516</td>
</tr>
<tr>
<td>20.4</td>
<td>Other phenomena in models of systemic risk</td>
<td>523</td>
</tr>
<tr>
<td>20.5</td>
<td>Counterparty contagion and systemic risk</td>
<td>529</td>
</tr>
<tr>
<td>20.6</td>
<td>Systemic risk attribution</td>
<td>534</td>
</tr>
<tr>
<td>20.7</td>
<td>Avenues for progress</td>
<td>537</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>540</td>
</tr>
</tbody>
</table>
PART VII: ALGORITHMIC TRADING

Algorithmic Trading

Alexander Schied

21 Market Microstructure Knowledge Needed for Controlling an Intra-Day Trading Process

Charles-Albert Lehalle

- 21.1 Market microstructure modeling and payoff understanding are key elements of quantitative trading
- 21.2 From market design to market microstructure: practical examples
- 21.3 Forward and backward components of the price formation process
- 21.4 From statistically optimal trade scheduling to microscopic optimization of order flows
- 21.5 Perspectives and future work

Bibliography

22 Dynamical Models of Market Impact and Algorithms for Order Execution

Jim Gatheral and Alexander Schied

- 22.1 Introduction
- 22.2 Price impact and price manipulation
- 22.3 Temporary and permanent price impact
- 22.4 Transient price impact
- 22.5 Further extensions

Bibliography

PART VIII: BEHAVIORAL FINANCE:

THE PSYCHOLOGICAL DIMENSION OF SYSTEMIC RISK

Hersh Shefrin

Behavioral Finance: Introduction

Bibliography

23 Fear, Greed, and Financial Crises: A Cognitive Neurosciences Perspective

Andrew Lo

- 23.1 Introduction
- 23.2 A brief history of the brain
- 23.3 Fear
- 23.4 Greed
Contents

23.5 Risk 636
23.6 Rationality 640
23.7 Sentience 645
23.8 Interactions 648
23.9 Policy implications 652
23.10 Conclusion 655
Bibliography 659

24 Bubbles, Crises, and Heterogeneous Beliefs 663
Wei Xiong
24.1 Historical bubbles 664
24.2 Limits of arbitrage 674
24.3 Heterogeneous beliefs 677
24.4 Resale option theory of bubbles 682
24.5 Credit cycles 692
24.6 General equilibrium models with heterogeneous beliefs 696
24.7 Welfare analysis with distorted beliefs 701
24.8 Summary and future directions 704
Bibliography 706

25 Systemic Risk and Sentiment 714
Giovanni Barone-Adesi, Loriano Mancini and Hersh Shefrin
25.1 Introduction 714
25.2 Behavioral asset pricing theory and sentiment 719
25.3 Estimating the empirical SDF 723
25.4 Sentiment and the financial crisis 726
25.5 External measures of sentiment 734
25.6 Sentiment, systemic risk and leverage 736
25.7 Conclusion 739

PART IX: REGULATION 743
Regulation: Introduction 745
Gary Stern and Ron J. Feldman

26 The New Financial Stability Framework in Europe 748
Carsten Detken and Per Nymand-Andersen
26.1 The new European approach to systemic risk 749
26.2 The new European systemic risk framework 753
26.3 The ECB approach to systemic risk 755
26.4 Global markets require a global approach to risk. 766
26.5 Conclusion 768
Bibliography 771
Contents

27 Sector-Level Financial Networks and Macroprudential Risk Analysis in the Euro Area

Olli Castrén and Ilja Kristian Kavonius

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.1 Introduction</td>
<td>775</td>
</tr>
<tr>
<td>27.2 Description of the data</td>
<td>777</td>
</tr>
<tr>
<td>27.3 The network of balance sheet exposures for the aggregate Euro area financial system</td>
<td>777</td>
</tr>
<tr>
<td>27.4 Derivation of the risk-based balance sheets</td>
<td>781</td>
</tr>
<tr>
<td>27.5 Propagation of shocks in the risk-based financial network</td>
<td>786</td>
</tr>
<tr>
<td>27.6 Concluding remarks</td>
<td>788</td>
</tr>
<tr>
<td>Bibliography</td>
<td>789</td>
</tr>
</tbody>
</table>

28 Systemic Risk Early Warning System: A Micro-Macro Prudential Synthesis

Mikhail V. Oet, Ryan Eiben, Timothy Bianco, Dieter Gramlich, Stephen J. Ong, and Jing Wang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.1 Introduction</td>
<td>792</td>
</tr>
<tr>
<td>28.2 EWS elements</td>
<td>796</td>
</tr>
<tr>
<td>28.3 Risk model and results</td>
<td>801</td>
</tr>
<tr>
<td>28.4 Discussion and implications</td>
<td>812</td>
</tr>
<tr>
<td>28.5 Conclusions and future work</td>
<td>828</td>
</tr>
<tr>
<td>Bibliography</td>
<td>843</td>
</tr>
</tbody>
</table>

PART X: COMPUTATIONAL ISSUES AND REQUIREMENTS

Computational Issues and Requirements: Introduction

Richard Byrne

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Enabling Data Analysis for Addressing Systemic Risk</td>
<td>852</td>
</tr>
<tr>
<td>Eric Hughes, Arnon Rosenthal, Charles Worrell</td>
<td></td>
</tr>
<tr>
<td>29.1 Challenges in analyzing systemic risk</td>
<td>852</td>
</tr>
<tr>
<td>29.2 Approaches that support analysis</td>
<td>853</td>
</tr>
<tr>
<td>29.3 Analysis approaches</td>
<td>862</td>
</tr>
<tr>
<td>29.4 Discussion and future research</td>
<td>866</td>
</tr>
<tr>
<td>Bibliography</td>
<td>868</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Operational Considerations in an Analytic Environment for Systemic Risk</td>
<td>869</td>
</tr>
<tr>
<td>Charles Worrell, Samar Guharay, Matt McMahon, Len Seligman, and Rajani Shenoy</td>
<td></td>
</tr>
<tr>
<td>30.1 Introduction</td>
<td>869</td>
</tr>
<tr>
<td>30.2 Controlling the frame of reference</td>
<td>870</td>
</tr>
</tbody>
</table>
Contents

30.3 Managing the data environment 871
30.4 Model hosting and execution environment 874
30.5 Comparison and measurement across disparate models 875
30.6 Aggregation of risk components 877
30.7 From analysis to decisions 879
Bibliography 880

31 Requirements for Systemic Risk Management in the Financial Sector 882
Alan J. King, Donna N. Dillenberger, Aviv Orani, Francis N. Parr, and Gong Su
31.1 Introduction 882
31.2 History 884
31.3 Modern mortgage market 884
31.4 Network and counterparty risk 890
31.5 Requirements for broad scope risk 892
31.6 Integrated risk analytics 895
31.7 Reference data 901
31.8 Risk analytics services 907
31.9 Summary 910
Bibliography 911

PART XI: ACCOUNTING ISSUES

913

Accounting and Systemic Risk: An Introduction
Trevor S. Harris
Bibliography 917

32 Accounting’s Role in the Reporting, Creation, and Avoidance of Systemic Risk in Financial Institutions 918
Trevor S. Harris, Robert Herz and Doron Nissim
32.1 Introduction 918
32.2 Some basics of accounting and financial reporting 921
32.3 Accounting for systemic risk 924
32.4 Accounting for different asset and liability classes 926
32.5 Accounting, pro-cyclicality and systemic risk: summary thoughts 957
32.6 Single firm versus systemic risk 961
32.7 Concluding remarks 962
Bibliography 963
Contributors

Viral V. Acharya New York University, Stern School of Business, 44 West 4th St, New York, NY 10012, USA. vacharya@stern.nyu.edu

Mike Atkin EDM Council, 10101 East Bexhill Drive, Kensington, MD 20895, USA. atkin@edmcouncil.org

Mike Bennett EDM Council, 43 Queen of Denmark Court, London SE16 7TB, UK. mbennett@edmcouncil.org

Giovanni Barone-Adesi Swiss Financial Institute, Faculty of Economics, University of Lugano, Via Buffi 13, CH-6900 Lugano, Switzerland. giovanni.baroneadesi@usi.ch

Carole Bernard Department of Statistics and Actuarial Science University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. c3bernar@uwaterloo.ca

Timothy Bianco Federal Reserve Bank of Cleveland, P.O. Box 6387, Cleveland, OH 44101-1387, USA. timothy.bianco@clev.frb.org

Eike Christian Brechmann Technische Universität München, Zentrum Mathematik, Lehrstuhl für Mathematische Statistik, Parkring 13, 85748 Garching-Hochbrück, Germany. brechmann@ma.tum.de

Christian Brownlees Department of Economics and Business, Pompeu Fabra University, Ramon Trias Fargas 25–27, 08005, Barcelona, Spain. christian.brownlees@upf.edu

Richard Byrne The MITRE Corp, 7515 Colshire Drive, McLean, VA 22102, USA. rbyrne@mitre.org

Agostino Capponi School of Industrial Engineering, Purdue University, West Lafayette, IN 47906, USA. capponi@purdue.edu

Olli Castrén European Central Bank (ECB), Kaiserstrasse 29, 60311, Frankfurt am Main, Germany. Olli.Castren@brevanhoward.com

Youngna Choi Department of Mathematical Sciences, Montclair State University, Montclair, NJ 07043, USA. choiy@mail.montclair.edu
Contributors

Matheus R. Grasselli
Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
grassel@fields.utoronto.ca

Marc Gratacos
Tradeheader, S.L. Carrer, Sant Pere 8, Baixos Interior, 08911 Badalona, Spain. mgratacos@tradeheader.com

Samar Guharay
The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA. sguharay@mitre.org

Trevor S. Harris
Columbia Business School, Columbia University, 3022 Broadway, Room 608, New York, NY 10027, USA.
tsh1@columbia.edu

Robert Herz
Columbia Business School, Columbia University, New York, NY 10027, USA. rh2551@columbia.edu

Edward T. Hida II
Partner, Global Leader – Risk & Capital Management, Deloitte & Touche LLP, One World Financial Center, New York, NY 10281, USA.
ehida@deloitte.com

Eric Hughes
The MITRE Corp, M/S K302, 202 Burlington Rd., Bedford, MA 01730, USA. hughes@mitre.org

Omneia R. H. Ismail
Accounting, Law, Finance and Economics Department, EDHEC Business School, 1 George Street, #07-02 Singapore 049145.
omneia.ismail@edhec-risk.com

Andrew Jacobs
HandCoded Software, 27 Ryhill Way, Lower Earley, Reading, Berkshire RG6 4AZ, UK. andrew.jacobs@btinternet.com

H.V. Jagadish
Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109-2121, USA.
jag@umich.edu

Ilja Kristian Kavonius
European Central Bank (ECB), Kaiserstrasse 29, 60311 Frankfurt am Main, Germany. Ilja_kristian.kavonius@ecb.int

Alan J. King
IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA. kingaj@us.ibm.com

Andrei Kirilenko
Commodity Futures Trading Commission, 1155 21st Street N.W., Washington, DC 20581, USA. akirilenko@cftc.gov

Joe Langsam
CFP Policy Fellow, Robert H. Smith School of Business, University of Maryland, Van Munching Hall, College Park, MD 20742, USA.
joe@langsam.org

Charles-Albert Lehalle
Senior Research Manager, Capital Fund Management, 23/25, rue de l’Université, 75007 Paris, France.
charles-albert.lehalle@cfm.fr

Alfred Lehar
Haskayne School of Business, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
alfred.lehar@haskayne.ucalgary.ca
Contributors

John Liechty College of Business, Pennsylvania State University, University Park, PA 16803, USA. jcl12@psu.edu

Andrew W. Lo MIT Sloan School of Management, 100 Main Street, Cambridge, MA 02142, USA; and Chief Investment Strategist, AlphaSimplex Group, LLC. alo@MIT.EDU

Loriano Mancini Swiss Finance Institute at EPFL, Quartier UNIL-Dorigny, Extranef 217, CH-1015 Lausanne, Switzerland. loriano.mancini@epfl.ch

Matt McMahon The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA. mcmahon@mitre.org

Amal Moussa Department of Statistics, Columbia University, New York, NY 10027, USA. am2810@columbia.edu

Doron Nissim Columbia Business School, Columbia University, New York, NY 10027, USA. dn75@columbia.edu

Per Nymand-Andersen European Central Bank (ECB), Kaiserstrasse 29, 60311, Frankfurt am Main, Germany. per.nymand@ecb.int

Mikhail V. Oet Federal Reserve Bank of Cleveland, P.O. Box 6387, Cleveland, OH 44101-1387, USA. mikhail.oet@clev.frb.org

Stephen J. Ong Federal Reserve Bank of Cleveland, P.O. Box 6387, Cleveland, OH 44101-1387, USA. stephen.ong@clev.frb.org

Aviv Orani IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA. aorani@us.ibm.com

George Papanicolaou Mathematics Department, Stanford University, CA 94305, USA. papanicolaou@stanford.edu

Francis N. Parr IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA. fnparr@us.ibm.com

Eleonora Patacchini Department of Economic and Social Analysis, La Sapienza University of Rome, P. le A. Moro 5, 00185 Roma, Italy. eleonora.patacchini@uniroma1.it

Lasse Pedersen New York University, Stern School of Business, 44 West 4th St, New York, NY 10012, USA. lpederse@stern.nyu.edu

Thomas Philippon New York University, Stern School of Business, 44 West 4th St, New York, NY 10012, USA. tphilippon@stern.nyu.edu

Matthew Richardson New York University, Stern School of Business, 44 West 4th St, New York, NY 10012, USA. mrichardson@stern.nyu.edu

L.C.G. Rogers Statistical Laboratory, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK. lcg1@cam.ac.uk

Arnon Rosenthal The MITRE Corporation, M/S K302, 202 Burlington Rd., Bedford, MA 01730, USA. arnie@mitre.org
Contributors

Edson B. Santos Banco Central do Brasil, P.O. Box 08670, SBS Quadra 3 Bloco B – Edificio-Sede, Brasilia, DF 70074–900, Brazil.
edson.bastos@bcb.gov.br

Alexander Schied Department of Mathematics, University of Mannheim, 68131 Mannheim, Germany. schied@uni-mannheim.de

Len Seligman The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102 USA. seligman@mitre.org

Hersh Shefrin Leavey School of Business, Santa Clara University, Santa Clara, CA 95053, USA. hshefrin@scu.edu

Rajani Shenoy The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA. rshenoy@mitre.org

Ronnie Sircar ORFE Department, Princeton University, Princeton, NJ 08544, USA. sircar@princeton.edu

Jeremy Staum Department of Industrial Engineering and Management Sciences, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3119, USA. j-staum@northwestern.edu

Sascha Steffen ESMT European School of Management and Technology, Schlossplatz 1, 10178 Berlin, Germany. steffen@esmt.org

Roger M. Stein Moody’s Research Labs, 7 World Trade Center, New York, NY 10007, USA. Roger.Stein@moodys.com

Gary Stern Stern Partners LLC, 1727 Humboldt Ave S, Minneapolis, MN 55403, USA. ghsstern@comcast.net

Gong Su IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA. gongsu@us.ibm.com

Martin Summer Economic Studies Division, Oesterreichische Nationalbank, Otto-Wagner-Platz 3, A-1011, Wien, Austria. Martin.Summer@oenb.at

Li-Hsien Sun Department of Statistics & Applied Probability, University of California, Santa Barbara, CA 93106-3110, USA. sun@pstat.ucsb.edu

Jing Wang Cleveland State University, Monte Ahuja College of Business, Finance Department, 1555 Saddle Brook Ln., Westlake, OH 44145, USA. jing.wang@clev.frb.org

Charles Worrell The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102, USA. cworrell@mitre.org

Wei Xiong Department of Economics and Bendheim Center for Finance, Princeton University, Princeton, NJ 08540, USA. wxiong@princeton.edu

Tzu-Wei Yang Institute for Computational and Mathematical Engineering (ICME), Stanford University, CA 94305, USA. twyang@stanford.edu

P. Zaczkowski Statistical Laboratory, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK. P.Zaczkowski@statslab.cam.ac.uk
Introduction

Jean-Pierre Fouque and Joe Langsam

The intent in producing this Handbook is to familiarize researchers and policy makers with the many aspects of systemic risk. The Handbook contains some 32 chapters prepared by experts from a multitude of academic and professional backgrounds. What will become clear to the reader are both the complexity of systemic risk and the necessity for bringing together multiple academic disciplines to better understand systemic risk and for designing policies to mitigate the impact of a systemic crisis upon the global economy. Recent history has shown us not only the enormous cost of a systemic crisis but also how woefully unprepared and ill-equipped governments and private markets have been to prevent a systemic crisis or minimize its impact.

The first issue in addressing systemic risk is to define the system. Despite the large volume of recent articles on the topic of systemic risk, there has been little attention paid to what is endogenous to the system and events that are external. The financial system is a system in which humans, their emotions, politics and responses to incentives play a critical role. The topology of the system is extremely complex, dynamic, and not well studied. The system does not recognize national boundaries. Events in the US have impacted the markets across the globe. European debt crisis is impacting the Americas, Africa, and Asia. The common use of the terms “Wall Street” and “Main Street” seems to suggest that the two are separable. The contribution of the consumer to systemic risk, as evidenced by the interplay of the subprime borrowers and massive bank losses, strongly demonstrates that the “Real Economy” and the “Financial Markets” are not separable systems. Wall Street and Main Street and their international equivalents intersect numerous times. Legislation, produced to address market disruptions, in turn, changes the behavior of market participants. In a similar vein, accounting rules are proposed in response to events and, in turn, change behavior. This is a system that is continually evolving. It is a system that has proven to be robust. The ongoing crisis has painfully demonstrated that it is not so robust that one can ignore systemic risks.
What are the important components of the financial system? It is beyond the scope of this book, or of research yet undertaken, to fully answer that question. The system continues to expand in scope and new classes emerge. Ten years ago, one would have considered mortgage servicing to be an insignificant and benign component of the system. Clearly, that is not the case today. The academic community has an ever increasing important role. The theories and applications developed by academics in the fields of finance, mathematics, economics, statistics, computer science and several other disciplines have been applied, sometimes incorrectly, to create products, create trading strategies, and motivate laws and regulations. The role of technology, once considered a back office cost center activity by the banking community, has become an important profit area through the emergence of medium and high frequency trading strategies.

Research into financial markets systemic risk is still in the very early stages. There is no agreed upon definition of systemic risk. There does not exist a formal definition of a systemic crisis adequate to officially identify when a crisis began and ended. A temporary working definition for systemic risk might be:

Systemic Risk is the risk of a disruption of the market’s ability to facilitate the flows of capital that results in the reduction in the growth of the global GDP.

This definition needs refinement but captures the essential characteristics of systemic risk. Systemic risk refers to the risk that the ability of the system to function as intended is seriously degraded. It does not refer to the risk that a component or several components fail unless such failure jeopardizes the integrity of the system. Models introduced in the Mathematical Finance section of this Handbook demonstrate how the inter-connectedness of the system can pose the potential for a systemic crisis. Systemic risk does not refer to losses in the financial markets unless such losses impact the financial system to the extent that there is impact on economic growth. Actions that reduce the default probability of each individual systemically important institution can have the result of increasing the probability of a system wide failure.

The financial system is not deterministic. It is subjected to random shocks and evolves in response to these shocks. The financial system is exposed to many sources of risk; some are endogenous reflecting the structure of the system while others are external. External shocks include potential attacks upon the system by those opposed to a capitalist system as well as natural disasters. Market participants not only respond to regulatory policies, but also anticipate policies and regulatory actions and develop new activities in response to these anticipations.

Systemic risk research, similar to medical research, has a dual focus: preventive and curative. Policies and actions as well as data requirements required to prevent systemic crisis differ from those needed to recover from a crisis. Mitigating actions...
have powerful impact upon the financial markets. Actions taken when not appropriate or that do not address current problematic factors can have strong adverse impact. A Fed easing in the midst of a crisis when credit is extremely tight and economic growth is waning has a far different impact than the same easing in periods when systemic risk attributable to excessive leverage is increasing.

This Handbook explores the roles of several of the important components of the financial system and explores how these areas relate to systemic risk. It is intended to be an introduction to the issues surrounding system risk. It is designed for researchers and policy makers. It is not intended to be complete, nor can it be. Much research must be undertaken before that could be done. The Handbook is organized into eleven Parts in the order below:

I. Data: The Prerequisite for Managing Systemic Risk
II. Statistics and Systemic Risk
III. Measuring and Regulating Systemic Risk
IV. Networks
V. Systemic Risk and Mathematical Finance
VI. Counterparty Risk and Systemic Risk
VII. Algorithmic Trading
VIII. Behavioral Finance: The Psychological Dimension Of Systemic Risk
IX. Regulation
X. Computational Issues and Requirements
XI. Accounting Issues

The reader will recognize that there is significant overlap in the topics covered in these chapters. Data issues are addressed in both the data chapter and the computational chapter. Mathematical modeling is an important feature in multiple chapters. Economics, finance, and behavioral finance are addressed in several chapters. This overlap reflects both the importance of the topics and the multiple approaches taken by different academic disciplines.

We begin the Handbook with a focus on data. Data is a critical component of all issues related to systemic risk. The global financial system constantly produces myriad amounts of data. This data, all too often, is inaccurate, chaotically reported, unreadable by electronic systems, and inaccessible to researchers, policy makers, investors, and regulators. Hank Paulson’s book On The Brink, makes it clear that the critical regulators and those involved in possible bailouts had vastly insufficient information regarding the size and nature of both Lehman Brothers and AIG. The absence of accessible well-structured records of ownership and transfers of mortgages has further complicated the housing crisis.

Data released into the markets will change the behavior of the markets. Systems
will need to be developed and upgraded to report trading data using a standardized format. This will be expensive. Not every section of the market benefits from having greater transparency in the markets. New products will be engineered and trading venues may be changed to avoid reporting the data that new legislation might require. Some, data including regulatory findings regarding the credit worthiness of a bank, while not suggesting imminent credit unworthiness, could cause bank runs. The questions of what to release to the public or to researchers and when to release it are important topics for both researchers and policy makers.

H.V. Jagadish, the editor of Part I, on Data, states at the start of his introduction that systemic risk involves dependencies between multiple entities in the financial system. It follows that evaluation of systemic risk requires the integration of data. The first chapter, by Edward Hida II, reviews the financial information required for systemic risk modeling and the multiplicity of places (and databases) in which various components may be found. This review sets the stage for later chapters that deal with data integration, pulling together information obtained from distributed sources in support of systemic risk assessment. The second chapter, by Roger Stein, has extensive discussion of the ways in which systemic modeling objectives bear directly on the priorities and approaches for data collection or, conversely, how decisions about data strategies act to constrain the types of questions that models can answer. The Financial products Markup Language (FpML) is a language for expressing financial contracts. In the third chapter, Andrew Jacobs and Marc Gratacos present a brief overview of FpML and then describe how it could provide a basis for computer-driven analysis of conditionally dependent chains of potential events. Arnon Rosenthal and Len Seligman, in the fourth chapter, discuss the daunting task of integrating massive data and then organizing and distributing the data in functionally useful form. The authors point out the advantages of standards and the need to continue developing them while warning the reader that it is unrealistic to expect a complete set of same. Rosenthal and Seligman emphasize the need to develop data techniques, in the absence of complete standards. In the final chapter, Mike Atkin and Mike Bennett of the EDM Council describe the promise of semantic web technologies to integrate financial data for the purposes identified in preceding chapters. They also discuss the naming standards and ontologies required to get started on this semantic web based integration. The Enterprise Data Management Council is a non-profit trade association of the financial industry focused on the representation, modeling, and integration of financial data.

Data is not information. Statistics, analysis, theory, and analytics are required to extract information from data. The second Part, Statistics and Systemic Risk, edited by John Liechty, introduces statistical approaches to measuring systemic risk. The first of the two chapters is written by Carole Bernard, Elke Christian Brechmann and Claudia Czado. This chapter introduces the reader to several measures of trad-
Introduction

ing and systemic risk. Some of these measures have been implemented with the results available on the web. Being able to measure and monitor systemic risk is critically important for macro-prudential risk management and prudent regulation. There is additional discussion about many of these measures in Part III, *Measuring and Regulating Systemic Risk*. The second chapter, written by John Liechty, introduces the reader to regime shifting models, a modeling approach that addresses the structural difference of market behavior in normal markets from those in crisis.

Part III, edited by Viral Acharya, discusses measures of systemic risk attributable to banks. The chapter by Viral Acharya, Christian Brownlees, Robert Engle, Farhang Farazmand and Matthew Richardson presents a method for using market data and regulatory stress test to compute such a measure. The chapter shows how this approach fits into the requirements of the Dodd–Frank Act to identify systematically important institutions (SIFIs). The second chapter written by Viral Acharya, Lasse Pedersen, Thomas Philippon, and Matthew Richardson proposes a method for identifying a shortfall in capital by a SIFI. The third, and final, chapter of this Part, written by Viral Acharya and Sascha Steffen, examines the international aspects of measuring systemic risk extending the analysis to Europe, Australia, and Asia. This chapter presents evidence on the consistency of performance of certain measures across these geographies.

Networks, Part IV, edited by Rama Cont, introduces network models as a methodology for understanding and modeling the relationships within the financial system. The first chapter, by Helmut Elsinger, Alfred Lehar and Martin Summer, provides a detailed study of simulation methods for insolvency contagion. The chapter by Ethan Cohen-Cole, Andrei Kirilenko and Eleonora Patacchini discusses the use of behavioral-based models in the financial markets context. They define a new measure of systemic risk and they suggest policy implications and areas for future research. The final chapter, by Rama Cont, Amal Moussa and Edson Santos, presents a quantitative methodology for analyzing the potential for contagion and systemic risk in networks of interlinked financial institutions. The authors illustrate their model with data from the Brazilian banking system. They present a strong argument that capital requirements should depend on exposures rather than balance sheet size.

Mathematical Finance, Part V, edited by Ronnie Sircar, provides the reader with a critically important introduction to the mathematical models of the economic and financial dynamics of the financial system. The chapters in this part provide a survey of selected mathematical models with a focus on those used in finance while also including a view of several models used in other fields. The chapter by Chris Rogers and Pawel Zaczkowski utilizes an equilibrium framework to model how the financial markets affect the real economy. Mathieu Grasselli and Omneia Ismail, in their chapter, introduce agent-based models to better understand bank runs.
Introduction

and the motivation for the creation of interbank markets. The chapter by Josselin Garnier, George Papanicolaou, and Tzu-Wei Yang, and that by Jean-Pierre Fouque and Li-Hsien Sun present models relying on a mean-field model of diffusions to demonstrate that agent cooperation, while reducing the probabilities of default for the individual agents, can lead to increased probability of systemic failure. This approach enables one to mathematically analyze highly complex interactions and model systemic risk as large deviations from a stable state. Youngna Choi and Raphael Douady use classical perturbation theory of dynamical systems to provide a measure of instability of the global financial market. They utilize this model to investigate the effects of certain regulatory policies.

Counterparty Risk and Systemic Risk, Part VI, is edited by Kay Giesecke and investigates systemic risk issues arising from counterparty risk. The chapter by Agostino Capponi describes the mechanics of counterparty risk from both the pricing and risk management perspectives. It contains a discussion of counterparty risk problems of active research interests including the modeling of liquidity curves to capture the funding cost incurred when computing Credit Valuation Adjustment (CVA) and the systemic risk that could be attributed to CVA. Next, Jeremy Staum illustrates the importance of understanding networks. He surveys models of counterparty contagion through the payments system, through cross-holdings of debt and equity, and through derivatives exposures.

There are two chapters in Part VII, Algorithmic Trading, edited by Alexander Schied. The first, by Charles-Albert Lehalle investigates relationships between market design and market microstructure using examples from Europe and the USA. Key events including the May 6, 2011 “flash crash” are modeled and commented. In the second chapter, Jim Gatheral and Alexander Schied provide an overview of several order execution algorithms with extensions to incorporate dark pools. They present models that describe the empirically observed transience of price impact and optimal trading strategies associated with these models.

Part VIII, Behavioral Finance: The Psychological Dimension of Systemic Risk, edited by Hersh Shefrin, introduces a topic that is critically important for understanding systemic risk in the financial markets. The Part is comprised of three chapters. In the first, Andrew Lo reviews both the basic neuroscience of financial decisions and the legal and regulatory infrastructure of the financial industry in light of this research. He then discusses the implications for financial crisis, regulatory reform, and systemic risk management. The chapter by Wei Xiong reviews a set of empirical and theoretical work that provides a coherent framework of bubbles and debt crisis based on agents heterogeneous beliefs. Giovanni Barone-Adesi, Loriano Mancini, and Hersh Shefrin examine, in their chapter, crisis events between 2002 and 2009 from three interrelated perspectives: marginal expected shortfall (MES) which utilizes publically available data to construct a measure of an individual fi-
Introduction

nancial firm’s contribution to systemic risk; behavioral theory incorporating the concept of sentiment; and asset pricing theory.

The regulatory community is charged with supervising the financial markets. Macro prudential supervision is intended to protect the public from systemic crisis. The regulatory environment is fractured not only by geopolitical structures but also within political units. The United States has several regulatory agencies often with overlapping responsibilities. While regulators may examine almost every activity of a bank, they have limited authority to look into the activities of the shadow banking system. Regulations intended to protect the public may have unintended consequences that could increase systemic risk. “Regulatory arbitrage” is a well-established practice. It should be well recognized that market participants respond to regulatory actions that are considered to be constraints on their ability to make a profit. Understanding how the markets will evolve in response to regulatory requirements is a critically important research topic.

Part IX, Regulation, edited by Gary Stern, contains three chapters. The first, by Carsten Detken and Per Nymand-Andersen, presents a conceptual framework for maintaining system stability. The chapter also describes the new European supervisory architecture and compares it to the US structure. The second chapter, by Olli Castrén and Ilja Kristian Kavonius, uses Euro flow of funds data to construct a network of bilateral balance sheet exposures and then shows how local shocks can propagate through the network and result in systemic shocks. They conclude that high financial leverage and high asset volatility increase a sector’s vulnerability to shocks and contagions. The third chapter, by Mikhail V. Oet, Ryan Eiben, Timothy Bianco, Dieter Gramlich, Stephen J. Ong, and Jing Wang, introduces SAFE (Systemic Assessment of the Financial Environment), an early warning system of systemic crisis developed by the Federal Reserve Bank of Cleveland. SAFE presents to institutional supervisors a toolkit of possible supervisory actions that can be used to diffuse the build-up of systemic risk in the markets.

Discussions of systemic risk often overlook the importance of technology. The financial system is heavily reliant upon computers and the internet. Computers and the systems through which the computers communicate with each other are used in every aspect of trading and risk management. The demands upon technology and the required computational power are increasing at a rapid rate. Macro-prudential regulatory supervision with potential requirements to acquire and analyze daily, if not real-time, transaction data, will require significant computational resources.

Part X, Computational Issues and Requirements, edited by Richard Byrne, address these problems. In the first chapter, Eric Hughes, Arnon Rosenthal, and Charles Worrell survey the computational approaches that may be needed to provide information about systemic risk and the mitigations of this risk. They also suggest future avenues of research. The chapter by Charles Worrell, Samara Guharay,
Introduction

Matt McMahon, Len Seligman, and Rajani Shenoy discuss several of the many operational considerations relevant to managing a modeling environment for analyzing systemic risk. Challenges in data management, model hosting, and data security are described. Three operating models for a risk modeling forum that would assist decision makers in building consensus around data driven analysis are described. The third and final chapter written by Alan King, Donna Dillenberger, Aviv Orani, Francis Parr, and Gong Su describes a conceptual architecture for a systemic risk management system. The authors examine what this system must be able to accomplish and the resource requirements for such a system.

Part XI, Accounting Issues, is edited by Trevor S. Harris and covers extensive ground although it contains but one chapter. It is authored by Trevor S. Harris, Robert Herz, and Doron Nissim and explains the role, purpose and limitations of external financial reporting and suggests that there are aspects of the current accounting system that may help provide early warnings of and help mitigate potential systemic risks and others that may mask and exacerbate these risks.

The Handbook introduces the reader to several of the areas of interest for researchers in systemic risk. It should not be expected that for such a complex topic as systemic risk that the Handbook would be comprehensive. Notably absent are articles addressing politics and cyber security. The events from 2008 through 2012 illustrate how intertwined the health of the economy and financial markets are with politics. Regulators are constrained by decisions to reduce budgets or to exclude companies from specific regulatory requirements. Modeling the financial markets to better understand systemic risk must recognize that national and global political processes are parts of the system that are critical factors in times of systemic crisis. The financial system is heavily reliant upon computers and the internet. Trade data, analytics, position data, and other confidential data is passed within a firm; trading data and trade instructions are passed between firms, exchanges, clearing houses, and regulatory agencies; price information is made publically available or restricted to subscribers. Almost every aspect of daily financial activity is touched by the internet. The security of the internet and other communications systems is a source of systemic risk that has received too little attention. This is very surprising given the well-publicized damage from the massive disclosures of confidential State Department memos, given the many breaches of “secure” files by hacker groups, and given known attacks on the files of contractors to the US Defense Department. These attacks are suspected of being supported by governments anxious to gain US defense secrets. Cyber warfare poses a growing threat to the financial markets. A successful attempt to place sizable numbers of bogus trades could cause investors to lose confidence in the financial markets. A successful attempt by an unfriendly country to disrupt the internet for a significant period of time could disrupt all market activity and cause a serious systemic crisis. Greater research is
required to design better protective measures for the trading environment and for
the protection of government collected position and transaction data.

The absence of an accepted definition of systemic risk was acknowledged earlier
in this introduction. This is not simply an abstract academic issue. Having clear def-
initions is a fundamental requirement for modeling. Policy makers and regulators
require coherent models of the financial markets to design policies and to antici-
pate the impact of actions. Effective management of systemic risk requires many
of the same models required for micro-prudential regulation and for risk manage-
ment of individual significantly important institutions. It also requires new classes
of analytics and models to analyze networks and the evolution of the system to
multiple types of shocks. These models must incorporate behavioral aspects that
help explain the transition from well behaving markets to markets with increasing
systemic risk and to markets in crisis. Remedial actions, whether for preventive or
curative purpose, impact the financial market and have the potential for doing harm
as well as good. Without a well-defined definition of systemic risk and metrics for
measuring the amount and nature of the risks, it would be difficult to effectively tar-
get regulatory mitigating action without running the real risk of doing more harm
than good.

This Handbook is designed to help educate policy makers of the importance of
new research to better understand and then protect against debilitating economic
crisis in the financial markets. It is designed to encourage researchers to better
understand the nature of the problem. Readers of the Handbook should begin to
understand the complexity of systemic risk. Micro-prudential regulation that ad-
dresses the stability of individual financial institutions needs to be coordinated
with macro-prudential policies that address the stability of the financial system.
The modern financial market with global movement of capital, complex securities
and computer aided trading strategies, including high speed algorithmic trading,
bears little resemblance to the financial markets for which regulations and regula-
tory policies were first promulgated. The models and academic theories developed
for yesterday’s financial markets are inadequate to address today’s global markets.
These need to be enhanced to capture the dynamics and evolutionary relationships
among the participants in today’s global financial market. Understanding the na-
ture of systemic risk, and developing preventive and curative tools requires well-
funded multi-disciplinary research. Our hope is that this Handbook stimulates the
support and research necessary to protect the financial markets which are essential
for global economic growth.