STONE TOOLS AND FOSSIL BONES

The stone tools and fossil bones from the earliest archaeological sites in Africa have been used over the past fifty years to create models that interpret how early hominins lived, foraged, behaved, and communicated, and how early and modern humans evolved. In this book, an international team of archaeologists and primatologists examines early Stone Age tools and bones and uses scientific methods to test alternative hypotheses that explain the archaeological record. By focusing on both lithics and faunal records, this volume presents the most holistic view to date of the archaeology of human origins.

Manuel Domínguez-Rodrigo is Co-Director of the Institute of Evolution in Africa, based in Madrid, Spain, and Professor in the Department of Prehistory at the Complutense University, Madrid. He is the author of *Deconstructing Olduvai and Peninj: A Research Project on Human Origins*. Currently, he is Co-Director of the Olduvai Paleoanthropology and Paleoeology Project (TOPPP) at Olduvai Gorge, Tanzania.
Stone Tools and Fossil Bones

Debates in the Archaeology of Human Origins

Edited by

MANUEL DOMÍNGUEZ-RODRIGO

Complutense University, Madrid
To Mary, Gabriel, and Liam for everything they have given me
Contents

Tables page ix
Figures xi
Contributors xiii

Introduction .. 1
Manuel Domínguez-Rodrigo

1 Toward a scientific-realistic theory on the origin of human behavior .. 11
Manuel Domínguez-Rodrigo

PART I. ON THE USE OF ANALOGY I: THE EARLIEST MEAT EATERS

2 Conceptual premises in experimental design and their bearing on the use of analogy: A critical example from experiments on cut marks ... 47
Manuel Domínguez-Rodrigo

3 The use of bone surface modifications to model hominid lifeways during the Oldowan .. 80
Charles P. Egeland

4 On early hominin meat eating and carcass acquisition strategies: Still relevant after all these years? .. 115
Karen D. Lupo

5 Meat foraging by Pleistocene African hominins: Tracking behavioral evolution beyond baseline inferences of early access to carcasses .. 152
Travis Rayne Pickering and Henry T. Bunn
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Can we use chimpanzee behavior to model early hominin hunting?</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Travis Rayne Pickering and Manuel Domínguez-Rodrigo</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The origins of the Oldowan: Why chimpanzees (Pan troglodytes) still are good models for technological evolution in Africa</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Susana Carvalho and William McGrew</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>What does Oldowan technology represent in terms of hominin behavior?</td>
<td>222</td>
</tr>
<tr>
<td>9</td>
<td>Testing cognitive skills in Early Pleistocene hominins: An analysis of the concepts of hierarchization and predetermination in the lithic assemblages of Type Section (Peninj, Tanzania)</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Fernando Diez-Martín, Felipe Cuartero, Policarpo Sánchez Yustos, Javier Baena, Daniel Rubio, and Manuel Domínguez-Rodrigo</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>The Early Acheulean in Africa: Past paradigms, current ideas, and future directions</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>Fernando Diez-Martín and Metin I. Eren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>359</td>
</tr>
</tbody>
</table>
Tables

1.1. Principal elements for a definition of human behavior
1.2. A proposed theory for the origin of human behavior
1.3. Hypotheses and their testing premises composing the theory of the emergence of human behavior
1.4. Refined description of concepts contained in factual hypotheses
2.1. Interpretations of the methodological utility of cut marks and of the data on these bone surface modifications from east African Plio-Pleistocene sites
9.1. Description of several variables used for the analysis of the Peninj lithic material
9.2. List and brief description of the replicated experiments for the study of the Peninj materials
9.3. List of hammerstones used for the experimental replication in the Peninj study
9.4. Variables used in the Peninj experimental program
9.5. Schematic reconstruction of the various reduction models of cores in the Peninj experimental research
9.6. Mean values of the three lithic samples in the Peninj study
9.7. Coefficients of discriminants in the Peninj archaeological and experimental collections
Figures

1.1. Interrelations among founder and factual hypotheses. page 27
1.2. An example of a suggested heuristic index. 33
1.3. Scheme of the progressive increasing knowledge concept, inherent to scientific realism. 37
2.1. Experimental matrix showing the conceptual assumptions in interpretations of cut marks. 55
3.1. Medial view of the left femur of an elk (*Cervus elaphus*) showing stone tool cut marks. 83
3.2. Examples of percussion marks. 85
3.3. Views of the right humerus of a white-tailed deer (*Odocoileus virginianus*) showing various types of carnivore damage. 87
3.4. Tibia fragment from the site of DK in Bed I at Olduvai Gorge (ca. 1.8 million years old) showing sediment abrasion, probably caused by trampling. 91
7.1. Diversity in nut cracking across nine chimpanzee populations. 207
7.2. Density (number of tools per m²) of anvil and hammer tools across seventeen nut-cracking sites at Bossou (Guinea). 212
7.3. Probability distribution of anvils alone, hammers alone, and anvils and hammers together at varying distances from the nut tree at seventeen sites combined. 213
7.4. Density (number of tools per m²) of excavated artifacts across twenty-three Oldowan sites. 215
9.1. Graphic representation of the criteria followed for the diacritical analysis of the Peninj cores. 253
9.2. Plot of loadings of data after an exploratory principal component analysis of the Peninj detached artifacts. 265
9.3. Classification tree of the three comparative groups in the study of the Peninj artifacts. 269
9.4. Multiple discriminant analysis of the Peninj artifacts. 271
9.5. Multiple discriminant analysis on log-transformed variables in the analysis of the Peninj artifacts. 275
9.6. Divergent interpretations of a medium quality nephelinite specimen retrieved from ST4 site (Peninj). 277
9.7. Photographs and diacritical schemes of cores selected by de la Torre (2002) and Mora (2009) as representative examples of the various phases hypothesized for the bifacial hierarchical centripetal reduction method. 278
9.8. Photographs and diacritical schemes of cores selected by de la Torre (2002) and Mora (2009) as representative examples of the various phases hypothesized for the bifacial hierarchical centripetal reduction method. 280
9.9. Photographs and diacritical schemes of the Peninj cores. 282
9.10. Photographs and diacritical schemes of the Peninj cores. 284
9.11. Multiple correspondence analysis of the factor variables determining the analysis of the Peninj cores. 287
9.12. Percentage contribution of the dorsal scar patterns observed in the Peninj archaeological flake sample. 291
9.13. Diacritical schemes of experimental cores for the study of the Peninj lithics. 295
10.1. Geographical location of Acheulean sites in Africa between 1.7 Ma and 1 Ma. 327
Contributors

Javier Baena, Department of Prehistory and Archaeology, Autonomous University of Madrid, Madrid, Spain

David R. Braun, Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Archaeology Department, University of Cape Town, South Africa

Henry T. Bunn, Department of Anthropology, University of Wisconsin–Madison, Madison, Wisconsin, USA

Susana Carvalho, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, United Kingdom; CIAS, Centre of Research in Anthropology and Health, University of Coimbra, Coimbra, Portugal

Felipe Cuartero, Department of Prehistory and Archaeology, Autonomous University of Madrid, Madrid, Spain

Fernando Diez-Martín, Department of Prehistory and Archaeology, University of Valladolid, Valladolid, Spain

Manuel Domínguez-Rodrigo, IDEA (Instituto de Evolución en África), Museo de los Orígenes, Madrid, Spain; Department of Prehistory, Complutense University, Madrid, Spain

Charles P. Egeland, Department of Anthropology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA

Metin I. Eren, Department of Anthropology, University of Kent, Canterbury, UK; Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
xiv

Contributors

Karen D. Lupo, Department of Anthropology, Washington University, St. Louis, Missouri, USA

William McGrew, Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, United Kingdom

Travis Rayne Pickering, Department of Anthropology, University of Wisconsin–Madison, Madison, Wisconsin, USA; Institute for Human Evolution, University of the Witwatersrand, Johannesburg, South Africa

Daniel Rubio, Department of Prehistory and Archaeology, Autonomous University of Madrid, Madrid, Spain

Policarpo Sánchez Yustos, Department of Prehistory and Archaeology, University of Valladolid, Valladolid, Spain