Contents

Preface		xiii	
Th	anks	xv	
1	What Gödel's Theorems say Basic arithmetic \cdot Incompleteness \cdot More incompleteness \cdot Some implica- tions? \cdot The unprovability of consistency \cdot More implications? \cdot What's next?	1	
2	Functions and enumerations Kinds of function \cdot Characteristic functions \cdot Enumerable sets \cdot Enumerating pairs of numbers \cdot An indenumerable set: Cantor's theorem	8	
3	$\begin{array}{l} \mbox{Effective computability} \\ \mbox{Effectively computable functions} \cdot \mbox{Effectively decidable properties and sets} \\ \cdot \mbox{Effective enumerability} \cdot \mbox{Another way of defining e.e. sets of numbers} \cdot \\ \mbox{The Basic Theorem about e.e. sets} \end{array}$	14	
4	Effectively axiomatized theories Formalization as an ideal \cdot Formalized languages \cdot Formalized theories \cdot More definitions \cdot The effective enumerability of theorems \cdot Negation- complete theories are decidable	25	
5	Capturing numerical properties Three remarks on notation \cdot The language $L_A \cdot A$ quick remark about truth \cdot Expressing numerical properties and functions \cdot Capturing nu- merical properties and functions \cdot Expressing vs. capturing: keeping the distinction clear	36	
6	The truths of arithmetic Sufficiently expressive language \cdot The truths of a sufficiently expressive language \cdot Unaxiomatizability \cdot An incompleteness theorem	46	
7	Sufficiently strong arithmetics The idea of a 'sufficiently strong' theory \cdot An undecidability theorem \cdot Another incompleteness theorem	49	

vii

Contents

8	Interlude: Taking stock Comparing incompleteness arguments · A road-map	53
9	Induction The basic principle \cdot Another version of the induction principle \cdot Induction and relations \cdot Rule, schema, or axiom?	56
10	Two formalized arithmetics BA, Baby Arithmetic \cdot BA is negation-complete \cdot Q, Robinson Arithmetic \cdot Which logic? \cdot Q is not complete \cdot Why Q is interesting	62
11	What Q can prove Capturing <i>less-than-or-equal-to</i> in $Q \cdot \leq $ and bounded quantifiers $\cdot Q$ is order-adequate $\cdot Q$ can correctly decide all Δ_0 sentences $\cdot \Sigma_1$ and Π_1 wffs $\cdot Q$ is Σ_1 -complete \cdot Intriguing corollaries \cdot Proving Q is order-adequate	71
12	$I\Delta_0,$ an arithmetic with induction The formal Induction Schema \cdot Introducing $I\Delta_0$ \cdot What $I\Delta_0$ can prove \cdot $I\Delta_0$ is not complete \cdot On to $I\Sigma_1$	83
13	First-order Peano Arithmetic Being generous with induction \cdot Summary overview of PA \cdot Hoping for completeness \cdot Is PA consistent?	90
14	Primitive recursive functions Introducing the primitive recursive functions \cdot Defining the p.r. functions more carefully \cdot An aside about extensionality \cdot The p.r. functions are computable \cdot Not all computable numerical functions are p.r. \cdot Defining p.r. properties and relations \cdot Building more p.r. functions and relations \cdot Further examples	97
15	L_A can express every p.r. function Starting the proof \cdot The idea of a β -function \cdot Finishing the proof \cdot The p.r. functions and relations are Σ_1 -expressible	113
16	Capturing functions Capturing defined \cdot 'Weak' capturing \cdot 'Strong' capturing	119
17	Q is p.r. adequate The idea of p.r. adequacy \cdot Starting the proof \cdot Completing the proof \cdot All p.r. functions can be captured in Q by Σ_1 wffs	124
18	Interlude: A very little about <i>Principia</i> <i>Principia</i> 's logicism · Gödel's impact · Another road-map	130

viii

(Contents
 19 The arithmetization of syntax Gödel numbering · Acceptable coding schemes · Coding sequences · Term Atom, Wff, Sent and Prf are p.r. · Some cute notation for Gödel numbers · The idea of diagonalization 	
20 Arithmetization in more detail The concatenation function \cdot Proving that <i>Term</i> is p.r. \cdot Proving that <i>Atom</i> , <i>Wff</i> and <i>Sent</i> are p.r. \cdot Towards proving <i>Prf</i> is p.r.	144
PA is incomplete Reminders · 'G is true if and only if it is unprovable' · PA is incomplete: the semantic argument · 'There is an undecidable sentence of Goldbach type · Starting the syntactic argument for incompleteness · ω-incompleteness ω-inconsistency · Finishing the syntactic argument · Canonical Gödel sen- tences and what they say	, ,
22 Gödel's First Theorem Generalizing the semantic argument · Incompletability · Generalizing the syntactic argument · The First Theorem	161 e
23 Interlude: About the First Theorem What we have proved \cdot Some ways to argue that G_T is true \cdot What doesn't follow from incompleteness \cdot What does follow from incompleteness? What's next?	
24 The Diagonalization Lemma Provability predicates \cdot An easy theorem about provability predicates Proving $G \leftrightarrow \neg Prov(\ulcornerG\urcorner) \cdot$ The Diagonalization Lemma \cdot Incompleteness again \cdot 'Gödel sentences' again \cdot Capturing provability?	
25 Rosser's proof Σ_1 -soundness and 1-consistency \cdot Rosser's construction: the basic idea The Gödel-Rosser Theorem \cdot Improving the theorem	185
26 Broadening the scope Generalizing beyond p.r. axiomatized theories · True Basic Arithmetic can't be axiomatized · Generalizing beyond overtly arithmetic theories A word of warning	
27 Tarski's Theorem Truth-predicates, truth-theories · The undefinability of truth · Tarski's Theorem: the inexpressibility of truth · Capturing and expressing again The Master Argument?	

ix

Contents		
28	$\ensuremath{Speed-up}$ The length of proofs \cdot The idea of speed-up \cdot Long proofs, via diagonalization	201
29	$\begin{array}{l} \mbox{Second-order arithmetics} \\ \mbox{Second-order syntax} & \cdot & \mbox{Second-order semantics} & \cdot & \mbox{The Induction Axiom} \\ \mbox{again} & \cdot & \mbox{`Neat' second-order arithmetics} & \cdot & \mbox{Introducing } PA_2 & \cdot & \mbox{Categoricity} & \cdot \\ \mbox{Incompleteness and categoricity} & \cdot & \mbox{Another arithmetic} & \cdot & \mbox{Speed-up again} \end{array}$	204
30	Interlude: Incompleteness and Isaacson's Thesis Taking stock \cdot The unprovability-in-PA of Goodstein's Theorem \cdot An aside on proving the Kirby-Paris Theorem \cdot Isaacson's Thesis \cdot Ever upwards \cdot Ancestral arithmetic	219
31	Gödel's Second Theorem for PA Defining Con \cdot The Formalized First Theorem in PA \cdot The Second Theorem for PA \cdot On ω -incompleteness and ω -consistency again \cdot So near, yet so far \cdot How should we interpret the Second Theorem?	233
32	On the 'unprovability of consistency' Three corollaries \cdot Weaker theories cannot prove the consistency of PA \cdot PA cannot prove the consistency of stronger theories \cdot Introducing Gentzen \cdot What do we learn from Gentzen's proof?	239
33	Generalizing the Second Theorem More notation \cdot The Hilbert-Bernays-Löb derivability conditions \cdot T's ignorance about what it can't prove \cdot The Formalized Second Theorem \cdot Jeroslow's Lemma and the Second Theorem	245
34	Löb's Theorem and other matters Theories that 'prove' their own inconsistency \cdot The equivalence of fixed points for $\neg Prov \cdot Consistency extensions \cdot Henkin's Problem and Löb'sTheorem \cdot Löb's Theorem and the Second Theorem$	252
35	Deriving the derivability conditions The second derivability condition for PA \cdot The third derivability condition for PA \cdot Generalizing to nice* theories \cdot The Second Theorem for weaker arithmetics	258
36	'The best and most general version' There are provable consistency sentences \cdot The 'intensionality' of the Second Theorem \cdot Reflection \cdot The best version? \cdot Another route to accepting a Gödel sentence?	262

х

37 Interlude: The Second Theorem, Hilbert, minds and machines	
 'Real' vs. 'ideal' mathematics · A quick aside: Gödel's caution · Relating the real and the ideal · Proving real-soundness? · The impact of Gödel · Minds and computers · The rest of this book: another road-map 	272
 38 μ-Recursive functions Minimization and μ-recursive functions · Another definition of μ-recursive ness · The Ackermann–Péter function · Ackermann–Péter is μ-recursive but not p.r. · Introducing Church's Thesis · Why can't we diagonalize out? · Using Church's Thesis 	285
39 Q is recursively adequate Capturing a function defined by minimization \cdot The recursive adequacy theorem \cdot Sufficiently strong theories again \cdot Nice theories can <i>only</i> capture μ -recursive functions	297
40 Undecidability and incompleteness Some more definitions · Q and PA are undecidable · The <i>Entscheidungs-problem</i> · Incompleteness theorems for nice' theories · Negation-complete theories are recursively decidable · Recursively adequate theories are not recursively decidable · Incompleteness again · True Basic Arithmetic is not r.e.	300
41 Turing machinesThe basic conception · Turing computation defined more carefully · Some simple examples · 'Turing machines' and their 'states'	310
 42 Turing machines and recursiveness μ-Recursiveness entails Turing computability · μ-Recursiveness entails Turing computability: the details · Turing computability entails μ-recursiveness · Generalizing 	321
43 Halting and incompleteness Two simple results about Turing programs · The halting problem · The Entscheidungsproblem again · The halting problem and incompleteness · Another incompleteness argument · Kleene's Normal Form Theorem · A note on partial computable functions · Kleene's Theorem entails Gödel's First Theorem	328
 He Church–Turing Thesis Putting things together · From Euclid to Hilbert · 1936 and all that · What the Church–Turing Thesis is and is not · The status of the Thesis 	338
45 Proving the Thesis?	348
	xi

Contents

Vagueness and the idea of computability \cdot Formal proofs and informal demonstrations \cdot Squeezing arguments – the very idea \cdot Kreisel's squeezing argument \cdot The first premiss for a squeezing argument \cdot The other premisses, thanks to Kolmogorov and Uspenskii \cdot The squeezing argument defended \cdot To summarize

46 Looking back	367
Further reading	370
Bibliography	372
Index	383