
1 What Gödel’s Theorems say

1.1 Basic arithmetic

It is child’s play to grasp the fundamental notions involved in the arithmetic of
addition and multiplication. Starting from zero, there is a sequence of ‘counting’
numbers, each having exactly one immediate successor. This sequence of numbers
– officially, the natural numbers – continues without end, never circling back on
itself; and there are no ‘stray’ natural numbers, lurking outside this sequence.
Adding n to m is the operation of starting from m in the number sequence and
moving n places along. Multiplying m by n is the operation of (starting from
zero and) repeatedly adding m, n times. It’s as simple as that.

Once these fundamental notions are in place, we can readily define many more
arithmetical concepts in terms of them. Thus, for any natural numbers m and
n, m < n iff there is a number k �= 0 such that m + k = n. m is a factor of n iff
0 < m and there is some number k such that 0 < k and m × k = n. m is even iff
it has 2 as a factor. m is prime iff 1 < m and m’s only factors are 1 and itself.
And so on.1

Using our basic and defined concepts, we can then frame various general claims
about the arithmetic of addition and multiplication. There are obvious truths
like ‘addition is commutative’, i.e. for any numbers m and n, m + n = n + m.
There are also some very unobvious claims, yet to be proved, like Goldbach’s
conjecture that every even number greater than two is the sum of two primes.

That second example illustrates the truism that it is one thing to understand
what we’ll call the language of basic arithmetic (i.e. the language of the addition
and multiplication of natural numbers, together with the standard first-order
logical apparatus), and it is quite another thing to be able to evaluate claims
that can be framed in that simple language.

Still, it is extremely plausible to suppose that, whether the answers are readily
available to us or not, questions posed in the language of basic arithmetic do have
entirely determinate answers. The structure of the natural number sequence,
with each number having a unique successor and there being no repetitions,
is (surely) simple and clear. The operations of addition and multiplication are
(surely) entirely well-defined; their outcomes are fixed by the school-room rules.
So what more could be needed to fix the truth or falsity of propositions that –
perhaps via a chain of definitions – amount to claims of basic arithmetic?

To put it fancifully: God lays down the number sequence and specifies how the
operations of addition and multiplication work. He has then done all he needs

1‘Iff’ is, of course, the standard logicians’ shorthand for ‘if and only if’.
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1 What Gödel’s Theorems say

to do to make it the case e.g. that Goldbach’s conjecture is true (or false, as the
case may be).

Of course, that way of putting it is rather too fanciful for comfort. We may
indeed find it compelling to think that the sequence of natural numbers has a
definite structure, and that the operations of addition and multiplication are
entirely nailed down by the familiar basic rules. But what is the real content of
the thought that the truth-values of all basic arithmetic propositions are thereby
‘fixed’?

Here’s one appealing way of giving non-metaphorical content to that thought.
The idea is that we can specify a bundle of fundamental assumptions or axioms
which somehow pin down the structure of the natural number sequence, and
which also characterize addition and multiplication (after all, it is pretty natural
to suppose that we can give a reasonably simple list of true axioms to encapsulate
the fundamental principles so readily grasped by the successful learner of school
arithmetic). So now suppose that ϕ is a proposition which can be formulated
in the language of basic arithmetic. Then, the appealing suggestion continues,
the assumed truth of our axioms ‘fixes’ the truth-value of any such ϕ in the
following sense: either ϕ is logically deducible from the axioms, and so ϕ is true;
or its negation ¬ϕ is deducible from the axioms, and so ϕ is false. We may not,
of course, actually stumble on a proof one way or the other: but the proposal is
that such a proof is always possible, since the axioms contain enough information
to enable the truth-value of any basic arithmetical proposition to be deductively
extracted by deploying familiar step-by-step logical rules of inference.

Logicians say that a theory T is negation-complete if, for every sentence ϕ in
the language of the theory, either ϕ or ¬ϕ can be derived in T ’s proof system.
So, put into that jargon, the suggestion we are considering is this: we should be
able to specify a reasonably simple bundle of true axioms which, together with
some logic, give us a negation-complete theory of basic arithmetic – i.e. we could
in principle use the theory to prove or disprove any claim which is expressible in
the language of basic arithmetic. If that’s right, truth in basic arithmetic could
just be equated with provability in this complete theory.

It is tempting to say rather more. For what will the axioms of basic arithmetic
look like? Here’s one candidate: ‘For every natural number, there’s a unique
next one’. This is evidently true; but evident how? As a first thought, you might
say ‘we can just see, using mathematical intuition, that this axiom is true’.
But the idea of mathematical intuition is obscure, to say the least. Maybe, on
second thoughts, we don’t need to appeal to it. Perhaps the axiom is evidently
true because it is some kind of definitional triviality. Perhaps it is just part
of what we mean by talk of the natural numbers that we are dealing with an
ordered sequence where each member of the sequence has a unique successor.
And, plausibly, other candidate axioms are similarly true by definition.

If those tempting second thoughts are right, then true arithmetical claims are
analytic in the philosophers’ sense of the word; that is to say, the truths of basic
arithmetic will all flow deductively from logic plus axioms which are trivially
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Incompleteness

true-by-definition.2 This so-called ‘logicist’ view would then give us a very neat
explanation of the special certainty and the necessary truth of correct claims of
basic arithmetic.

1.2 Incompleteness

But now, in headline terms, Gödel’s First Incompleteness Theorem shows that
the entirely natural idea that we can give a complete theory of basic arithmetic
with a tidy set of axioms is wrong.

Suppose we try to specify a suitable axiomatic theory T to capture the struc-
ture of the natural number sequence and pin down addition and multiplication
(and maybe a lot more besides). We want T to have a nice set of true axioms
and a reliably truth-preserving deductive logic. In that case, everything T proves
must be true, i.e. T is a sound theory. But now Gödel gives us a recipe for coming
up with a corresponding sentence GT , couched in the language of basic arith-
metic, such that – assuming T really is sound – (i) we can show that GT can’t
be derived in T , and yet (ii) we can recognize that GT must be true.

This is surely quite astonishing. Somehow, it seems, the truths of basic arith-
metic must elude our attempts to pin them down by giving a nice set of funda-
mental assumptions from which we can deduce everything else. So how does
Gödel show this in his great 1931 paper which presents the Incompleteness
Theorems?

Well, note how we can use numbers and numerical propositions to encode
facts about all sorts of things. For a trivial example, students in the philosophy
department might be numbered off in such a way that the first digit encodes
information about whether a student is an undergraduate or postgraduate, the
next two digits encode year of admission, and so on. Much more excitingly,
Gödel notes that we can use numbers and numerical propositions to encode
facts about theories, e.g. facts about what can be derived in a theory T .3 And
what he then did is find a general method that enabled him to take any theory T

strong enough to capture a modest amount of basic arithmetic and construct a
corresponding arithmetical sentence GT which encodes the claim ‘The sentence
GT itself is unprovable in theory T ’. So GT is true if and only if T can’t prove it.

2Thus Gottlob Frege, writing in his wonderful Grundlagen der Arithmetik, urges us to seek
the proof of a mathematical proposition by ‘following it up right back to the primitive truths.
If, in carrying out this process, we come only on general logical laws and on definitions, then
the truth is an analytic one.’ (Frege, 1884, p. 4)

3By the way, it is absolutely standard for logicians to talk of a theory T as proving a
sentence ϕ when there is a logically correct derivation of ϕ from T ’s assumptions. But T ’s
assumptions may be contentious or plain false or downright absurd. So, T ’s proving ϕ in this
logician’s sense does not mean that ϕ is proved in the sense that it is established as true.
It is far too late in the game to kick against the logician’s usage, and in most contexts it is
harmless. But our special concern in this book is with the connections and contrasts between
being true and being provable in this or that theory T . So we need to be on our guard. And
to help emphasize that proving-in-T is not always proving-as-true, I’ll often talk of ‘deriving’
rather than ‘proving’ sentences when it is the logician’s notion which is in play.
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1 What Gödel’s Theorems say

Suppose then that T is sound. If T were to prove GT , GT would be false, and
T would then prove a falsehood, which it can’t do. Hence, if T is sound, GT is
unprovable in T . Which makes GT true. Hence ¬GT is false. And so that too
can’t be proved by T , because T only proves truths. In sum, still assuming T is
sound, neither GT nor its negation will be provable in T . Therefore T can’t be
negation-complete.

But in fact we don’t need to assume that T is sound ; we can make do with very
significantly less. Gödel’s official version of the First Theorem shows that T ’s
mere consistency is enough to guarantee that a suitably constructed GT is true-
but-unprovable-in-T . And we only need a little more to show that ¬GT is not
provable either (we won’t pause now to fuss about the needed extra assumption).

We said: the sentence GT encodes the claim that that very sentence is un-
provable. But doesn’t this make GT rather uncomfortably reminiscent of the
Liar sentence ‘This very sentence is false’ (which is false if it is true, and true if
it is false)? You might well wonder whether Gödel’s argument doesn’t lead to a
cousin of the Liar paradox rather than to a theorem. But not so. As we will see,
there really is nothing at all suspect or paradoxical about Gödel’s First Theorem
as a technical result about formal axiomatized systems (a result which in any
case can be proved without appeal to ‘self-referential’ sentences).

‘Hold on! If we locate GT , a Gödel sentence for our favourite nicely axiomatized
sound theory of arithmetic T , and can argue that GT is true-though-unprovable-
in-T , why can’t we just patch things up by adding it to T as a new axiom?’
Well, to be sure, if we start off with the sound theory T (from which we can’t
deduce GT ), and add GT as a new axiom, we will get an expanded sound theory
U = T + GT from which we can quite trivially derive GT . But we can now
just re-apply Gödel’s method to our improved theory U to find a new true-but-
unprovable-in-U arithmetic sentence GU that encodes ‘I am unprovable in U ’.
So U again is incomplete. Thus T is not only incomplete but, in a quite crucial
sense, is incompletable.

Let’s emphasize this key point. There’s nothing at all mysterious about a the-
ory’s failing to be negation-complete. Imagine the departmental administrator’s
‘theory’ D which records some basic facts about the course selections of a group
of students. The language of D, let’s suppose, is very limited and can only be
used to tell us about who takes what course in what room when. From the ‘ax-
ioms’ of D we’ll be able, let’s suppose, to deduce further facts – such as that Jack
and Jill take a course together, and that ten people are taking the advanced logic
course. But if there’s currently no relevant axiom in D about their classmate Jo,
we might not be able to deduce either J = ‘Jo takes logic’ or ¬J = ‘Jo doesn’t
take logic’. In that case, D isn’t yet a negation-complete story about the course
selections of students.

However, that’s just boring: for the ‘theory’ about course selection is no doubt
completable (i.e. it can readily be expanded to settle every question that can
be posed in its very limited language). By contrast, what gives Gödel’s First
Theorem its real bite is that it shows that any nicely axiomatized and sound
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More incompleteness

theory of basic arithmetic must remain incomplete, however many new true
axioms we give it.4 (And again, we can weaken the soundness condition, and can
– more or less – just require consistency for incompletability.)

1.3 More incompleteness

Incompletability does not just affect theories of basic arithmetic. Consider set
theory, for example. Start with the empty set ∅. Form the set {∅} containing
∅ as its sole member. Then form the set containing the empty set we started off
with plus the set we’ve just constructed. Keep on going, at each stage forming
the set of all the sets so far constructed. We get the sequence

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

This sequence has the structure of the natural numbers. We can pick out a first
member (corresponding to zero); each member has one and only one successor; it
never repeats. We can go on to define analogues of addition and multiplication.
Now, any standard set theory allows us to define this sequence. So if we could
have a negation-complete and sound axiomatized set theory, then we could, in
particular, have a negation-complete theory of the fragment of set theory which
provides us with an analogue of arithmetic. Adding a simple routine for trans-
lating the results for this fragment into the familiar language of basic arithmetic
would then give us a complete sound theory of arithmetic. But Gödel’s First
Incompleteness Theorem tells us there can’t be such a theory. So there cannot
be a sound negation-complete set theory.

The point evidently generalizes: any sound axiomatized mathematical theory
T that can define (an analogue of) the natural-number sequence and replicate
enough of the basic arithmetic of addition and multiplication must be incomplete
and incompletable.

1.4 Some implications?

Gödelian incompleteness immediately challenges what otherwise looks to be a
really rather attractive suggestion about the status of basic arithmetic – namely
the logicist idea that it all flows deductively using simple logic from a simple
bunch of definitional truths that articulate the very ideas of the natural numbers,
addition and multiplication.

But then, how do we manage somehow to latch on to the nature of the un-
ending number sequence and the operations of addition and multiplication in a
way that outstrips whatever rules and principles can be captured in definitions?
At this point it can begin to seem that we must have a rule-transcending cognitive
grasp of the numbers which underlies our ability to recognize certain ‘Gödel

4What makes for being a ‘nicely’ axiomatized theory is the topic of Section 4.3.

5

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02284-3 - An Introduction to Gödel’s Theorems: Second Edition
Peter Smith
Excerpt
More information

http://www.cambridge.org/9781107022843
http://www.cambridge.org
http://www.cambridge.org


1 What Gödel’s Theorems say

sentences’ as correct arithmetical propositions. And if you are tempted to think
so, then you may well be further tempted to conclude that minds such as ours,
capable of such rule-transcendence, can’t be machines (supposing, reasonably
enough, that the cognitive operations of anything properly called a machine can
be fully captured by rules governing the machine’s behaviour).

So already there’s apparently a quick route from reflections about Gödel’s
First Theorem to some conclusions about the nature of arithmetical truth and
the nature of the minds that grasp it. Whether those conclusions really follow
will emerge later. For the moment, we have an initial idea of what the First
Theorem says and why it might matter – enough, I hope, already to entice you
to delve further into the story that unfolds in this book.

1.5 The unprovability of consistency

If we can derive even a modest amount of basic arithmetic in theory T , then we’ll
be able to derive 0 �= 1.5 So if T also proves 0 = 1, it is inconsistent. Conversely, if
T is inconsistent, then – since we can derive anything in an inconsistent theory6

– it can prove 0 = 1. But we said that we can use numerical propositions to
encode facts about what can be derived in T . So there will in particular be a
numerical proposition ConT that encodes the claim that we can’t derive 0 = 1
in T , i.e. encodes in a natural way the claim that T is consistent.

We know, however, that there is a numerical proposition which encodes the
claim that GT is unprovable: we have already said that it is GT itself.

So this means that (half of) the conclusion of Gödel’s official First Theorem,
namely the claim that if T is consistent then GT is unprovable, can itself be
encoded by a numerical proposition, namely ConT → GT . And now for another
wonderful Gödelian insight. It turns out that the informal reasoning that we
use, outside T , to show ‘if T is consistent, then GT is unprovable’ is elementary
enough to be mirrored by reasoning inside T (i.e. by reasoning with numerical
propositions which encode facts about T -proofs). Or at least that’s true so long as
T satisfies conditions just a bit stronger than the official First Theorem assumes.
So, again on modest assumptions, we can derive ConT → GT inside T .

But the official First Theorem has already shown that if T is consistent we
can’t derive GT in T . So it immediately follows that if T is consistent it can’t
prove ConT . And that is Gödel’s Second Incompleteness Theorem. Roughly in-
terpreted: nice theories that include enough basic arithmetic can’t prove their
own consistency.7

5We’ll allow ourselves to abbreviate expressions of the form ¬σ = τ as σ �= τ .
6There are, to be sure, deviant non-classical logics in which this principle doesn’t hold.

In this book, however, we aren’t going to say much more about them, if only because of
considerations of space.

7That is rough. The Second Theorem shows that, if T is consistent, T can’t prove ConT ,
which is certainly one natural way of expressing T ’s consistency inside T . But couldn’t there
be some other sentence, Con′

T , which also in some good sense expresses T ’s consistency, where
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More implications?

1.6 More implications?

Suppose that there’s a genuine issue about whether T is consistent. Then even
before we’d ever heard of Gödel’s Second Theorem, we wouldn’t have been con-
vinced of its consistency by a derivation of ConT inside T . For we’d just note
that if T were in fact inconsistent, we’d be able to derive any T -sentence we like
in the theory – including a false statement of its own consistency!

The Second Theorem now shows that we would indeed be right not to trust a
theory’s announcement of its own consistency. For (assuming T includes enough
arithmetic), if T entails ConT , then the theory must in fact be inconsistent.

However, the real impact of the Second Theorem isn’t in the limitations it
places on a theory’s proving its own consistency. The key point is this. If a
nice arithmetical theory T can’t even prove itself to be consistent, it certainly
can’t prove that a richer theory T + is consistent (since if the richer theory is
consistent, then any cut-down part of it is consistent). Hence we can’t use ‘safe’
reasoning of the kind we can encode in ordinary arithmetic to prove that other
more ‘risky’ mathematical theories are in good shape. For example, we can’t use
unproblematic arithmetical reasoning to convince ourselves of the consistency of
set theory (with its postulation of a universe of wildly infinite sets).

And that is a very interesting result, for it seems to sabotage what is called
Hilbert’s Programme, which is precisely the project of trying to defend the wilder
reaches of infinitistic mathematics by giving consistency proofs which use only
‘safe’ methods. A great deal more about this in due course.

1.7 What’s next?

What we’ve said so far, of course, has been extremely sketchy and introductory.
We must now start to do better. After preliminaries in Chapter 2 (including
our first example of a ‘diagonalization’ argument), we go on in Chapter 3 to
introduce the notions of effective computability, decidability and enumerability,
notions we are going to need in what follows. Then in Chapter 4, we explain
more carefully what we mean by talking about an ‘axiomatized theory’ and
prove some elementary results about axiomatized theories in general. In Chap-
ter 5, we introduce some concepts relating specifically to axiomatized theories
of arithmetic. Then in Chapters 6 and 7 we prove a pair of neat and relatively
easy results – first that any sound and ‘sufficiently expressive’ axiomatized the-
ory of arithmetic is negation incomplete, and then similarly for any consistent
and ‘sufficiently strong’ axiomatized theory. For reasons that we will explain in
Chapter 8, these informal results fall some way short of Gödel’s own First In-
completeness Theorem. But they do provide a very nice introduction to some
key ideas that we’ll be developing more formally in the ensuing chapters.

T does prove Con′
T (and we avoid trouble because T doesn’t prove Con′

T → GT )? We’ll return
to this question in Sections 31.6 and 36.1.
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2 Functions and enumerations

We start by fixing some entirely standard notation and terminology for talking
about functions (worth knowing anyway, quite apart from the occasional use we
make of it in coming chapters). We next introduce the useful little notion of
a ‘characteristic function’. Then we explain the idea of enumerability and give
our first example of a ‘diagonalization argument’ – an absolutely crucial type of
argument which will feature repeatedly in this book.

2.1 Kinds of function

(a) Functions, and in particular functions from natural numbers to natural
numbers, will feature pivotally in everything that follows.

Note though that our concern will be with total functions. A total one-place
function maps each and every element of its domain to some unique correspond-
ing value in its codomain. Similarly for many-place functions: for example, the
total two-place addition function maps any two numbers to their unique sum.

For certain wider mathematical purposes, especially in the broader theory of
computation, the more general idea of a partial function can take centre stage.
This is a mapping f which does not necessarily have an output for each argument
in its domain (for a simple example, consider the function mapping a natural
number to its natural number square root, if it has one). However, we won’t
need to say much about partial functions in this book, and hence – by default –
plain ‘function’ will henceforth always mean ‘total function’.

(b) The conventional notation to indicate that the one-place total function
f maps elements of the domain Δ to values in the codomain Γ is, of course,
f : Δ → Γ. Let f be such a function. Then we say

1. The range of f is {f(x) | x ∈ Δ}, i.e. the set of elements in Γ that are
values of f for arguments in Δ. Note, the range of a function need not be
the whole codomain.

2. f is surjective iff the range of f indeed is the whole codomain Γ – i.e. just
if for every y ∈ Γ there is some x ∈ Δ such that f(x) = y. (If you prefer
that in plainer English, you can say that such a function is onto, since it
maps Δ onto the whole of Γ.)

3. f is injective iff f maps different elements of Δ to different elements of Γ
– i.e. just if, whenever x �= y, f(x) �= f(y). (In plainer English, you can
say that such a function is one-to-one.)
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Characteristic functions

4. f is bijective iff it is both surjective and injective. (Or if you prefer, f is
then a one-one correspondence between Δ and Γ.)1

These definitions generalize in natural ways to many-place functions that map
two or more objects to values: but we needn’t pause over this.

(c) Our special concern, we said, is going to be with numerical functions. It
is conventional to use ‘N’ for the set of natural numbers (which includes zero,
remember). So f : N → N is a one-place total function, defined for all natural
numbers, with number values. While c : N → {0, 1}, for example, is a one-place
numerical function whose values are restricted to 0 and 1.

‘N2’ standardly denotes the set of ordered pairs of numbers, so f : N → N
2

is a one-place function that maps numbers to ordered pairs of numbers. Note,
g : N

2 → N is another one-place function which this time maps an ordered pair
(which is one thing!) to a number. So, to be really pernickety, if we want to
indicate a function like addition which maps two numbers to a number, we
really need a notation such as h : N, N → N.

2.2 Characteristic functions

As well as talking about numerical functions, we will also be talking a lot about
numerical properties and relations. But discussion of these can be tied back to
discussion of functions using the following idea:

The characteristic function of the numerical property P is the one-
place function cP : N → {0, 1} such that if n is P , then cP (n) = 0,
and if n isn’t P , then cP (n) = 1. (So if P is the property of being
even, then cP maps even numbers to 0 and odd numbers to 1.)

The characteristic function of the two-place numerical relation R

is the two-place function cR : N, N → {0, 1} such that if m is R to
n, then cR(m, n) = 0, and if m isn’t R to n, then cR(m, n) = 1.

The notion evidently generalizes to many-place relations in the obvious way.
The choice of values for the characteristic function is, of course, pretty arbi-

trary; any pair of distinct objects would do as the set of values. Our choice is
supposed to be reminiscent of the familiar use of 0 and 1, one way round or the
other, to stand in for true and false. And our selection of 0 rather than 1 for
true – not the usual choice, but it was Gödel’s – is merely for later neatness.

Now, the numerical property P partitions the numbers into two sets, the
set of numbers that have the property and the set of numbers that don’t. Its
corresponding characteristic function cP also partitions the numbers into two
sets, the set of numbers the function maps to the value 0, and the set of numbers
the function maps to the value 1. And these are of course exactly the same

1If these notions really are new to you, it will help to look at the on-line exercises.
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2 Functions and enumerations

partition both times. So in a good sense, P and its characteristic function cP

encapsulate just the same information about a partition. That’s why we can
typically move between talk of a property and talk of its characteristic function
without loss of relevant information. Similarly, of course, for relations.

We will be making use of characteristic functions a lot, starting in the next
chapter. But the rest of this chapter discusses something else, namely . . .

2.3 Enumerable sets

Suppose that Σ is some set of items: its members might be natural numbers,
computer programs, infinite binary strings, complex numbers or whatever. Then,
as a suggestive first shot, we can say

The set Σ is enumerable iff its members can – at least in principle
– be listed off in some numerical order (a zero-th, first, second, . . . )
with every member appearing on the list; repetitions are allowed,
and the list may be infinite.

It is tidiest to think of the empty set as the limiting case of an enumerable set;
after all, it is enumerated by the empty list.

One issue with this rough definition is that, if we are literally to ‘list off’
elements of Σ, then we need to be dealing with elements which are either things
that themselves can be written down (like finite strings of symbols), or which
at least have standard representations that can be written down (in the way
that natural numbers have numerals which denote them). That condition will
be satisfied in most of the cases that interest us in this book; but we need the
idea of enumerability to apply more widely.

A more immediate problem is that it is of course careless to talk about ‘listing
off’ infinite sets as if we can complete the job. What we really mean is that any
member of Σ will eventually appear on this list, if we go on long enough.

Let’s give a more rigorous definition, then, that doesn’t presuppose that we
have a way of writing down the members of Σ, and doesn’t imagine us actually
making a list. So officially we will now say

The set Σ is enumerable iff either Σ is empty or else there is a
surjective function f : N → Σ (so Σ is the range of f : we can say
that such a function enumerates Σ).

This is equivalent to our original informal definition (at least in the cases we are
most interested in, when it makes sense to talk of listing the members of Σ).

Proof Both definitions trivially cover the case where Σ is empty. So concentrate
on the non-empty cases.

Pretend we can list off all the members of Σ in some order, repetitions allowed.
Count off the members of the list from zero, and define the function f as follows:
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