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1

Preliminaries

1.1 Function spaces

1.1.1 Functions of the space variables

Let Q be a domain in R
d (i.e., a connected open subset of R

d ) or the torus

T
d = R

d/2ÃZ
d . We shall say that a domain Q is Lipschitz if its boundary "Q

is locally Lipschitz.1 We shall need Lebesgue and Sobolev spaces on Q and

some embedding and interpolation theorems.

Lebesgue spaces

We denote by Lp(Q; R
n), 1 f p f >, the usual Lebesgue space of vector-

valued functions and abbreviate Lp(Q; R) = Lp(Q). We write "·, ·� for the L2

scalar product and | · |p for the standard norm in Lp(Q; R
n).

Sobolev spaces

We denote by C>
0 (Q; R

n) the space of infinitely smooth functions × : Q ³ R
n

with compact support. Let u and v be two locally integrable scalar functions

on Q and let ³ = (³1, . . . , ³d ) be a multi-index. We say that v is the ³th weak

partial derivative of u if
�

Q

uD³× dx = (21)|³|

�

Q

v× dx for all × * C>
0 (Q; R),

where |³| := ³1 + · · · + ³d and D³ = "
³1

1 · · · "
³d

d . In this case, we write D³u =

v.

Let m g 0 be an integer. The space Hm(Q, R
n) consists of all locally inte-

grable functions u : Q ³ R
n such that the derivative D³u exists in the weak

1 This means that "Q can be represented locally as the graph of a Lipschitz function.
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2 Preliminaries

sense for each multi-index ³ with |³| f m and belongs to L2(Q; R
n). We write

Hm(Q; R) = Hm(Q) and define the norm in Hm(Q; R
n) as

�u�m :=

�

�

|³|fm

|D³u|22

�1/2

.

In the case Q = T
d , it is easy to define Hm(Td ; R

n) for all m * R. To this end,

let us expand a function u * L2(Td , R
n) in a Fourier series:

u(x) =
�

s*Zd

use
isx .

Define the following norm, which is equivalent to � · �m for non-negative

integers m:

�u�m =

�

�

s*Zd

�

1 + |s|2
�m

|us |
2

�1/2

. (1.1)

The space Hm(Td ; R
n) is defined as the closure of C>(Td , R

n) with respect

to the norm � · �m. It is easy to see that if m g 0 is an integer, then the two

definitions of Hm(Td ; R
n) give the same function space. The following result

is a simple consequence of the definition of � · �m.

Lemma 1.1.1 For any m * R and any multi-index ³, the linear map D³

is continuous from Hm(Td ; R
n) to Hm2|³|(Td ; R

n). Accordingly, the Laplace

operator � : Hm(Td ; R
n) ³ Hm22(Td ; R

n) is continuous. Similar assertions

are true for any open domain Q ¢ R
d and any integer m g 0.

Now let u * Hm(Td ; R
n) be a function with zero mean value, that is,

"u� := (2Ã )2d

�

Td

u(x) dx = 0 , (1.2)

where the integral is understood in the sense of the theory of distributions

if m < 0. In this case, the first Fourier coefficient of u is zero, u0 = 0, and

therefore the norm

�u�m =

�

�

s �=0

|s|2m|us |
2

�1/2

is equivalent to (1.1) on the space

Ḣm(Td ; R
n) = {u * Hm(Td ; R

n) : "u� = 0} .

In particular, �u�2
1 = |'u|2 is a norm on Ḣ 1(Td ; R

n).

Finally, let us define the Sobolev space Hm(Q; R
n) in a bounded Lipschitz

domain Q ¢ R
d for an arbitrary m g 0. Namely, without loss of generality, we

can assume that Q ¢ T
d . We shall say that a function u * L2(Q, R

n) belongs

to Hm(Q; R
n) if there is a function ũ * Hm(Td ; R

n) whose restriction to Q

coincides with u. In this case, we define �u�m as the infimum of �ũ�m over all

possible extensions ũ * Hm(Td ; R
n) for u.
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1.1 Function spaces 3

Property 1.1.2 Sobolev embeddings. Let Q be either a Lipschitz domain in R
d

or the torus T
d .

1. If m f d
2

and 2 f q f 2d
d22m

, q < >, then

Hm(Q; R
n) ¢ Lq(Q; R

n) . (1.3)

2. If m g d
2

+ ³ with 0 < ³ < 1, then

Hm(Q; R
n) ¢ C³

b (Q; R
n) , (1.4)

where C³
b (Q) denotes the space of functions that are bounded and Hölder

continuous with exponent ³. In particular, if m > d
2
, then Hm(Q; R

n) is

continuously embedded into the space Cb(Q; R
n) of bounded continuous

functions.

3. If Q is bounded, then we have the compact embedding

Hm1 (Q; R
n) � Hm2 (Q; R

n) for m1 > m2. (1.5)

It follows that embeddings (1.3) and (1.4) are compact for q < 2d
d22m

and

m > d
2

+ ³, respectively.

Property 1.1.3 Duality. The spaces Hm(Td ; R
n) and H2m(Td ; R

n) are dual

with respect to the L2-scalar product "·, ·�. That is,

�u�m = sup
v

|"u, v�| for any u * C>(Td ; R
n) , (1.6)

where the supremum is taken over all v * C>(Td ; R
n) such that �v�2m f 1.

Relation (1.6) implies that the scalar product in L2 extends to a continuous

bilinear map from Hm(Td ; R
n) × H2m(Td ; R

n) to R.

Property 1.1.4 Interpolation inequality. Let Q ¢ R
d be a Lipschitz domain,

let a < b be non-negative integers, and let 0 f » f 1 be a constant. Then

�u�»a+(12»)b f �u�»
a�u�12»

b for any u * H b(Q; R
n). (1.7)

In the case of the torus, inequality (1.7) holds for any real numbers a < b and

any » * [0, 1].

Proof for the case of a torus We have

�u�2
»a+(12»)b =

�

s*Zd

�

1 + |s|2
�»a+(12»)b

|us |
2

=
�

s*Zd

�

�

1 + |s|2
�»a

|us |
2»

��

�

1 + |s|2
�(12»)b

|us |
2(12»)

�

f

�

�

s*Zd

�

1 + |s|2
�a

|us |
2

�»�
�

s*Zd

�

1 + |s|2
�b

|us |
2

�12»

,

where we used Hölder’s inequality in the last step.
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4 Preliminaries

Example 1.1.5 Let Q be either a Lipschitz domain in R
2 or the torus T

2. Then

the Sobolev embedding (1.3), with m = 1/2 and q = 4, and the interpolation

inequality (1.6) with a = 0, b = 1, and » = 1
2
, imply that

|u|4 f C1�u�1/2 f C2

�

|u|2�u�1 for any u * H 1(Q; R
n). (1.8)

This is Ladyzhenskaya’s inequality.

A proof of Properties 1.1.2–1.1.4 can be found in [BIN79; Ste70; Tay97].

1.1.2 Functions of space and time variables

Solutions of the equations mentioned in the introduction are functions depend-

ing on the time t and the space variables x. We fix any T > 0 and view a

solution u(t, x) with 0 f t f T as a map

[0, T ] 2³ “space of functions of x”, t �³ u(t, ·) .

Let us introduce the corresponding functional spaces.

For a Banach space X, we denote by C(0, T ; X) the space of continuous

functions u : [0, T ] ³ X and endow it with the norm

�u�C(0,T ;X) = sup
0ftfT

�u(t)�X,

where � · �X stands for the norm in X. We denote by S(0, T ; X) the space of

functions of the form

u(t) =

N
�

k=1

ukI�k
(t),

where N g 1 is an integer depending on the function, uk * X are some vectors,

�k are Borel-measurable subsets of [0, T ] (see Section 1.2.1), and I� stands

for the indicator function of �. If X is separable, then for p * [1,>] define

Lp(0, T ; X) as the completion of the space S(0, T ; X) with respect to the norm

�u�Lp(0,T ;X) =

§

«

«

«

«

«

¬

�� T

0

�u(t)�
p

Xdt

�1/p

for 1 f p < >,

ess sup
0ftfT

�u(t)�X for p = >.

Note that, in view of Fubini’s theorem, we have

Lp
�

0, T ; Lp(Q; R
n)

�

= Lp
�

(0, T ) × Q; R
n
�

for p < >.

A more detailed discussion of these spaces can be found in [Lio69; Yos95].

We shall also need the space of continuous functions on an interval with

range in a metric space. Namely, let J ¢ R be a closed interval and let X be a

Polish space, that is, a complete separable metric space with a distance distX.
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1.2 Basic facts from measure theory 5

We denote by C(J ; X) the space of continuous functions from J to X. When J

is bounded, C(J ; X) is a Polish space with respect to the distance

�u 2 v�C(J ;X) = max
t*J

distX
�

u(t), v(t)
�

.

In the case of an unbounded interval J , we endow C(J ; X) with the metric

dist(u, v) =

>
�

k=1

22k �u 2 v�C(Jk ;X)

1 + �u 2 v�C(Jk ;X)

, (1.9)

where Jk = J + [2k, k]. Note that, for a sequence {uj } ¢ C(J,X), we have

dist(uj , u) ³ 0 as j ³ > if and only if �uj 2 u�C(Jk ;X) for each k. That is,

(1.9) is the metric of uniform convergence on bounded intervals. When J = Z

(or J is a countable subset of Z), formula (1.9) may be used to define a distance

on XJ . This distance corresponds to the Tikhonov topology on XJ .

Exercise 1.1.6 Prove that if J ¢ R is an unbounded closed interval, then

C(J ; X) is a Polish space. Prove also that if X is a separable Banach space,

then C(J ; X) is a separable Fréchet space.

1.2 Basic facts from measure theory

In this section, we first recall the concept of a Ã -algebra, together with some

related definitions, and formulate without proof three standard results on the

passage to the limit under Lebesgue’s integral. We next discuss various metrics

on the space of probability measures on a Polish space and establish some

results on (maximal) couplings of measures.

1.2.1 σ -algebras and measures

Let � be an arbitrary set and let F be a family of subsets of �. Recall that F is

called a Ã -algebra if it contains the sets ∅ and �, and is invariant under taking

the complement and countable union of its elements. Any pair (�,F) is called a

measurable space. If (�i,Fi), i = 1, 2, are measurable spaces, then a mapping

f : �1 ³ �2 is said to be measurable if f 21(�) * F1 for any � * F2. If ¿ is

a (positive) measure on (�1,F1), then its image under f is the measure f7(¿)

on (�2,F2) defined by f7(¿)(�) = ¿(f 21(�)) for any � * F2. Note that f7 is

a linear mapping on the space of positive measures:

f7(c1¿1 + c2¿2) = c1f7(¿1) + c2f7(¿2) for any c1, c2 g 0.

The product of two measurable spaces (�i,Fi), i = 1, 2, is defined as the set

�1 × �2 endowed with the minimal Ã -algebra F1 · F2 generated by subsets

of the form �1 × �2 with �i * Fi . The product of finitely or countably many

Ã -algebras is defined in a similar way.

Given a probability measure ¿ on a measurable space (�,F), we denote

by N¿ the family of subsets A ¢ � such that A ¢ B for some B * F with
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6 Preliminaries

¿(B) = 0. A Ã -algebra F is said to be complete with respect to a measure ¿ if

it contains all sets from N¿. The completion of F with respect to ¿ is defined

as the minimal Ã -algebra generated by F * N¿ and is denoted by F¿. This is

the minimal complete Ã -algebra which contains F . A subset � ¢ � is said to

be universally measurable if it belongs to F¿ for any probability measure ¿

on (�,F). If ¿ is a measure on (�1,F1), F1 is complete with respect to ¿,

and a map f : �1 ³ �2 is a ¿-almost sure limit of a sequence of measurable

maps, then f is measurable.

Now let X be a Polish space, that is, a complete separable metric space. We

denote by distX the metric on X. The Borel Ã -algebra B = B(X) is defined as

the minimal Ã -algebra containing all open subsets of X. The pair (X,B(X)) is

called a measurable Polish space. If X1 and X2 are Polish spaces, then a map

f : X1 ³ X2 is said to be measurable if f 21(�) * B(X1) for any � * B(X2).

In particular, a function f : X ³ R is called measurable if it is measurable

with respect to the Borel Ã -algebras on X and R. An important property of

Polish spaces is that any probability measure on it is regular. Namely, Ulam’s

theorem says that, for any probability measure ¿ on a Polish space X and any

· > 0, there is a compact set K ¢ X such that ¿(K) g 1 2 ·. A proof of this

result can be found in [Dud02] (see theorem 7.1.4).

Recall that, for any probability measure P on a measurable space (�,F),

the triple (�,F , P) is called a probability space. A probability space (�,F , P)

is said to be complete if FP = F . We shall often consider a probability space

together with a family {Ft ¢ F} of Ã -algebras that depend on a parame-

ter t varying either in R+ or in Z+. In this case, we shall always assume

that Ft is non-decreasing with respect to t . The quadruple (�,F ,Ft , P) is

called a filtered probability space. We shall say that (�,F ,Ft , P) satisfies

the usual hypotheses if (�,F , P) is complete and Ft contains all P-null sets

of F .

If X is a Polish space, then an X-valued random variable is a measurable

map ¿ from a probability space (�,F , P) into X. The law or the distribution of ¿

is defined as the image of P under ¿ and is denoted by D(¿ ), i.e., D(¿ ) = ¿7(P).

If we need to emphasise that the distribution of a random variable is considered

with respect to a probability measure ¿, then we write D¿(¿ ). An X-valued

random process is defined as a collection of a probability space (�,F , P)

and a family of X-valued random variables {¿t } on � (where t varies in R+

or Z+). If the underlying probability space is equipped with a filtration Ft ,

then we shall say that the process ¿t is adapted to Ft if ¿t is Ft -measurable for

any t g 0. Finally, a random process ¿t defined on a filtered probability space

(�,F ,Ft , P) is said to be progressively measurable if for any t g 0 the map

(s, Ë) �³ ¿s(Ë) from [0, t] × � to X is measurable. It is clear that if t varies

in Z+, then these two concepts coincide.
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1.2 Basic facts from measure theory 7

1.2.2 Convergence of integrals

In what follows, we shall systematically use well-known results on the passage

to the limit under Lebesgue’s integrals. For the reader’s convenience, we state

them here without proof, referring the reader to section 4.3 of [Dud02].

Let (�,F) be a measurable space, let ¿ be an arbitrary Ã -finite measure on

it (so ¿(�) f >), and let fn : � ³ C be a sequence of integrable functions.

The following result, called Lebesgue’s theorem on dominated convergence,

gives a sufficient condition for the convergence of the integrals of fn to that of

the limit function.

Theorem 1.2.1 Assume that {fn}ng1 is a sequence of functions that converge

¿-almost surely and satisfy the inequality

|fn(Ë)| f g(Ë) for ¿-almost every Ë * �, (1.10)

where g : � ³ R+ is a ¿-integrable function. Then

lim
n³>

�

�

fnd¿ =

�

�

�

lim
n³>

fn

�

d¿. (1.11)

In the case when the functions fn are real-valued and form a monotone

sequence, the bound (1.10) can be replaced by a weaker condition, which

a posteriori turns out to be equivalent to the former. Namely, we have the

following monotone convergence theorem.

Theorem 1.2.2 Let fn : � ³ R be a non-decreasing (or non-increasing)

sequence that converges ¿-almost surely and satisfies the condition

sup
ng1

�

�

�

�

�

�

fnd¿

�

�

�

�

< >.

Then relation (1.11) holds.

Finally, the following result, called Fatou’s lemma, is useful when estimating

the integral of the limit for a sequence of non-negative functions.

Theorem 1.2.3 Let fn : � ³ R+ be an arbitrary sequence of ¿-integrable

functions. Then

�

�

�

lim inf
n³>

fn

�

d¿ f lim inf
n³>

�

�

fnd¿.

In particular, the three theorems above apply if � is the set N of non-negative

integers with the counting measure. In this case, they describe passage to the

limit for sums of infinite series.
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8 Preliminaries

1.2.3 Metrics on the space of probabilities and

convergence of measures

In what follows, we denote by X a Polish space with a metric dX. Define Cb(X)

as the space of bounded continuous functions f : X ³ R endowed with the

norm

�f �> = sup
u*X

|f (u)|,

and denote by Lb(X) the space of bounded Lipschitz functions on X. That is,

of functions f * Cb(X) for which

Lip(f ) := sup
u1,u2*X

|f (u1) 2 f (u2)|

distX(u1, u2)
< >.

The space Lb(X) is endowed with the norm

�f �L = �f �> + Lip(f ).

Note that Cb(X) and Lb(X) are Banach spaces with respect to the correspond-

ing norms. The following exercise summarises some further properties of

these spaces.

Exercise 1.2.4 Let X be a Polish space.

(i) Prove that Cb(X) is separable if and only if X is compact.

(ii) Prove that Lb(X) is not separable for the space X = [0, 1] with the usual

metric.

Hint: To prove that Cb(X) is separable for a compact metric space X, use the

existence of a finite ·-net and a partition of unity on X. To show that if X is not

compact, then Cb(X) is not separable, use the existence of a sequence {xk} ¢ X

such that distX(xk, xm) g · > 0. Finally, to prove (ii), construct a continuum

{×³} ¢ L>(X) such that the distance between any two functions is equal to 1,

and use the integrals of ×³ .

Let us denote by P(X) the set of probability measures on (X,B(X)) and

by P1(X) the subset of those measures ¿ * P(X) for which

m1(¿) :=

�

X

distX(u, u0) ¿(du) < >, (1.12)

where u0 * X is an arbitrary point. The triangle inequality implies that the class

P1(X) does not depend on the choice of u0. We shall need the following three

metrics.

Total variation distance:

�¿1 2 ¿2�var :=
1

2
sup

f * Cb(X)

�f �> f 1

�

�(f,¿1) 2 (f,¿2)
�

�, ¿1, ¿2 * P(X). (1.13)
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1.2 Basic facts from measure theory 9

This is the distance induced on P(X) by its embedding into the space dual

to Cb(X). It can be extended to probability measures on an arbitrary measurable

space; see Remark 1.2.8 below.

Dual-Lipschitz distance:

�¿1 2 ¿2�
7
L := sup

f * Lb(X)

�f �L f 1

�

�(f,¿1) 2 (f,¿2)
�

�, ¿1, ¿2 * P(X). (1.14)

This is the distance induced on P(X) by its embedding into the space dual

to Lb(X).

Kantorovich distance:

�¿1 2 ¿2�K := sup

f * Lb(X)

Lip(f ) f 1

�

�(f,¿1) 2 (f,¿2)
�

�, ¿1, ¿2 * P1(X). (1.15)

Exercise 1.2.5 Show that the symmetric functions (1.13)–(1.15) define metrics

on the sets P(X) and P1(X). Hint: The only non-trivial point is that if the

measures ¿1 and ¿2 satisfy the relation �¿1 2 ¿2�
7
L = 0, then ¿1 = ¿2. This

can be done with the help of the monotone class technique; see Corollary A.1.3

in the appendix.

An immediate consequence of definitions (1.13)–(1.15) and the inequalities

�f �> f �f �L and Lip(f ) f �f �L is that

�¿1 2 ¿2�
7
L f 2�¿1 2 ¿2�var for ¿1, ¿2 * P(X), (1.16)

�¿1 2 ¿2�
7
L f �¿1 2 ¿2�K for ¿1, ¿2 * P1(X). (1.17)

Furthermore, if the space X is bounded, that is, there is an element u0 * X and
a constant d0 > 0 such that

distX(u, u0) f d0 for all u * X,

then, for any function f * Cb(X) vanishing at u0 * X, we have

�f �> f d0 Lip(f ),

where the right-hand side may be infinite. It follows that in this case

�¿1 2 ¿2�K f 2d0�¿1 2 ¿2�var for ¿1, ¿2 * P1(X).

It turns out that the distance � · �7
L is equivalent to the one obtained by replac-

ing Lb(X) in (1.14) with the space of bounded Hölder-continuous functions.

Namely, for ³ * (0, 1) we denote by C
³

b (X) the space of continuous functions
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10 Preliminaries

f : X ³ R such that

|f |³ := �f �> + sup
0<distX(u,v)f1

|f (u) 2 f (v)|

distX(u, v)³
< >.

Let us set

�¿1 2 ¿2�
7
³ := sup

f * C
³

b (X)

|f |³ f 1

�

�(f,¿1) 2 (f,¿2)
�

�, ¿1, ¿2 * P(X). (1.18)

Proposition 1.2.6 For any ³ * (0, 1) and ¿1, ¿2 * P(X), we have

�¿1 2 ¿2�
7
L f �¿1 2 ¿2�

7
³ f 5

�

�¿1 2 ¿2�
7
L

�
1

22³ .

Proof The lower bound of the inequality is obvious, and therefore we shall

confine ourselves to the proof of the upper bound. For any continuous function

f : X ³ R, we define an approximation for it by the relation

f·(u) = inf
v*X

�

·21d(u, v) + f (v)
�

, u * X, (1.19)

where · > 0 is an arbitrary constant. It is a matter of direct verification to show

that if f * C
³

b (X) and �f �³ f 1, then

�f·�L f 1 + ·21, 0 f f (u) 2 f·(u) f ·
1

12³ for u * X. (1.20)

We now fix · > 0 and find a function f * C
³

b (X) with �f �³ f 1 such that

�¿1 2 ¿2�
7
³ f |(f,¿1) 2 (f,¿2)| + ·. (1.21)

It follows from (1.20) that, for any · > 0, we have

|(f,¿1) 2 (f,¿2)| f |(f· 2 f,¿1)| + |(f· 2 f,¿2)| + |(f·, ¿1) 2 (f·, ¿2)|

f 2·
1

12³ +
�

1 + ·21
�

�¿1 2 ¿2�
7
L.

Choosing · = (�¿1 2 ¿2�
7
L)

12³

22³ and noting that �¿1 2 ¿2�
7
L f 2, we get

|(f,¿1) 2 (f,¿2)| f 5
�

�¿1 2 ¿2�
7
L

�
1

22³ .

Combining this with (1.21) and recalling that · > 0 was arbitrary, we arrive at

the required assertion.

The following proposition gives an alternative description of the total varia-

tion distance and provides some formulas for calculating it.

Proposition 1.2.7 For any ¿1, ¿2 * P(X), we have

�¿1 2 ¿2�var = sup
�*B(X)

|¿1(�) 2 ¿2(�)|. (1.22)

Furthermore, if ¿1 and ¿2 are absolutely continuous with respect to a given

measure m * P(X), then

�¿1 2 ¿2�var =
1

2

�

X

�

�Ã1(u) 2 Ã2(u)
�

� dm = 1 2

�

X

(Ã1 ' Ã2)(u) dm, (1.23)

where Ãi(u) is the density of ¿i with respect to m.
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