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Preliminaries

The vessels, heavy laden, put to sea
With prosp’rous winds; a woman leads the way.
I know not, if by stress of weather driv’n,
Or was their fatal course dispos’d by Heav'n;
At last they landed, where from far your eyes
May view the turrets of new Carthage rise;
There bought a space of ground, which (Byrsa call’d,
From the bull’s hide) they first inclos’d, and wall’d.
(Virgil, The Aeneid)

The above excerpt cryptically recounts the legend of Dido, the Queen of
Carthage, from the ninth century Bc. After being exiled from Tyre in Lebanon,
Dido purportedly sailed to the shores of North Africa (now Tunisia) and requested
that the local inhabitants give her and her party the land that could be enclosed by the
hide of an ox. Not thinking that an oxhide could encompass a large portion of land,
they granted her wish. She then proceeded to have the hide cut into narrow strips and
extended end-to-end to form a semicircle bounding the shoreline and encompassing
a nearby hill. This area became known as Carthage.

Certain branches of mathematics have arisen out of consideration of the theoret-
ical consequences of known mathematical theorems. More often than not, however,
new branches of mathematics have been developed to provide the means to address
certain types of practical problems that initially are often very specific. For example,
how did Dido know to arrange the oxhide in a circular shape in order to enclose the
largest possible area with a given perimeter length?

One of the best examples of a branch of mathematics motivated by applications,
and the one required to solve the problem of Dido, is the calculus of variations, which
today encompasses numerous, far-reaching applications. Its application-driven roots
live on in several fundamental variational principles that form the foundation of a
number of important fields in the physical sciences and engineering. A glance through
the table of contents of this text will hint at the variety of topics that can be treated us-
ing variational methods. This will become more evident in Section 1.3 as we motivate
the need for variational calculus through consideration of three practical problems
and by elucidation of a variety of physical phenomena and optimization principles
through a unified variational framework throughout the remainder of the text.
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4 1 Preliminaries

1.1 A Bit of History

To fully appreciate our treatment of the calculus of variations, a bit of history is in
order.! Doing so will assist us in placing the principles, methods, and applications to
be encountered in a useful framework. In addition, our discussions will be replete
with some of the greatest names in mathematics and physics, so it is hoped that a
brief history will enrich our study of these topics and the people behind them.

Each era of human existence is marked to some extent by the scientific and
technological problems of the day, and it is always the case that some of the most
fertile minds are drawn to addressing the greatest challenges and grandest questions.
After seminal contributions by the Greek philosophers in the sixth through fourth
centuries BC and the Roman emphasis on infrastructure and engineering for the
following 800 years, high-level intellectual pursuits were largely abandoned for
a number of centuries while Western society was dominated by instability and
decentralized power during the Middle Ages. Whereas this period was marked by the
need to accurately launch projectiles into neighboring feudal castles, the subsequent
periods of the Renaissance and Age of Enlightenment began a scientific revolution
that we are still experiencing today. This period led to mathematical contributions,
scientific progress, artistic expression, architectural prowess, and musical genius that
have stood the test of time well into the modern — and now postmodern — era.

Coming out of the Middle Ages at the dawn of the sixteenth century, the
Church provided needed stability, but it also wielded excessive power over the
largely uneducated and illiterate populace throughout Europe. While the spiritual
authority of the Church was being challenged by the reformers, such as Martin
Luther, its scientific authority was being challenged by the increasingly rigorous
methods of Nicolaus Copernicus and Galileo Galilei based on observation and
experimentation. The Renaissance also saw a return to classical Greek philosophy
and the Greek emphasis on realism in art and expression. Moreover, it was a time in
which integration and harmonization of broad endeavors were encouraged, giving
rise to the “Renaissance man.” While Leonardo da Vinci was the quintessential
Renaissance man of Italy, the center of gravity of the Renaissance, Christopher
Wren exemplified the British variant. Best known for being the architect of St. Paul’s
Cathedral in London (and approximately fifty other churches after the Great Fire of
London in 1666), he was also a noted astronomer, physicist, and mathematician, as
well as the founder of the Royal Society of London.

Much of the most celebrated art, architecture, and music of the time was
commissioned by or directed toward the Church, reflecting an overarching emphasis
on unifying and integrating various human intellectual, spiritual, and artistic pursuits.
There was a developing sense that an intrinsic order, beauty, and simplicity governs
both the universe and the highest human endeavors. The Renaissance produced
artists, musicians, scientists, and mathematicians emboldened by the potential
contributions that they as individuals and as humans collectively could make in all
human undertaking.

1 Our brief history is admittedly European-centric, as this region provided the immediate historical
context for the development of variational methods.
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1.1 A Bit of History 5

Released from the patriarchal constraints on scientific thought rendered by
the Church and emboldened with a strong sense of realism and drive toward
harmonization of all aspects of life by the Renaissance artists and thinkers, the Age of
Enlightenment was born. While the Renaissance up through the seventeenth century
was marked primarily by artistic and musical innovation, a revolution in science
and mathematics began that laid the foundation for the Age of Enlightenment,
which spanned the eighteenth century and led to unprecedented mathematical and
scientific progress. Both the Renaissance and Age of Enlightenment shared the ideals
of realism in which objects, thought, and indeed the entire universe were viewed,
rendered, and modeled as they really were.

The Age of Enlightenment brought a renewed emphasis on how to explain the
existence and operation of the universe, and this required a new set of mathematical
tools. An increased priority was placed on providing explanations and mathematical
models to elucidate observed phenomena. Together these led to an explosion of
development and discovery in science and mathematics, the two feeding off of each
other’s questions and contributions. Much of today’s mathematical arsenal had its
origins during the Age of Enlightenment, including complex variables, differential
equations, and, most notably, differential calculus.

The stage was set for tremendous advances during the Age of Enlightenment by
the work of Isaac Newton and the formation of scientific societies in the latter part
of the seventeenth century. These societies provided a means for interaction among
mathematicians and scientists and the broader communication of findings through
printed journals, and Newton’s work inspired a renewed search for universal physical
principles and the mathematics to describe them. In particular, Newton’s Prin-
cipia (Mathematical Principles of Natural Philosophy) (1687) had several important
influences beyond the actual articulation of his laws of motion and gravity:

1. The accurate prediction of the movement of the celestial bodies must have
seemed almost magical to a world accustomed to its scientists primarily providing
observations, with only occasional explanation.

2. The realization that the same physical principles that govern the falling of an
apple also govern the movement of those celestial bodies throughout the universe
accelerated the human pursuit of a unified theory that explains all observations
in our universe.

3. Arecognition of the power of mathematics to provide the unifying language for
such models and laws.

4. Newton’s methods formed the basis of the scientific method.

These four influences of Newton’s Principia emboldened scientists and mathemati-
cians for centuries to pursue a complete understanding of the universe. As concluded
by Greer (2005),” “[Newton] demonstrated that, on the basis of experiments con-
ducted in a tiny corner of the universe, and aided by the lever of mathematics, he
had discovered the nature of gravitation everywhere.”

In large part, Newton inaugurated the Age of Enlightenment with his physical
laws articulated in the Principia and his — and Leibniz’s — calculus. Calculus provided
the mathematical tools, and his physical laws provided the framework and impetus

2 A Brief History of the Western World by Thomas H. Greer.
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6 1 Preliminaries

for further developments in the ensuing years. The attitudes and successes of the Age
of Enlightenment fostered a search for the ultimate truths that govern the physical
world in which we live and the reasons for its existence. Permeating many aspects of
life and thought was a renewed sense of order, idealism, and perfection. Scientists
concluded that because the universe is ordered and behaves in a rational manner,
it is amenable to explanation via universal laws expressed mathematically. It is into
this world seeking order and beauty in its many forms that the contributions of Pierre
Louis Moreau de Maupertuis, Leonhard Euler, and Joseph Louis Lagrange, among
others, were made.

Coupled with Newton’s influence on our understanding of the mechanics of
moving bodies, and the ancillary philosophical contributions that his laws supplied,
was Pierre de Fermat’s principle asserting that light optimizes its path according to
a minimum principle. These realizations inaugurated a search for other minimum
principles that may govern the universe and gave rise to what we now call optimiza-
tion. Today, we would classify Dido’s problem as an optimization problem, in which
we seek the “best” or “optimal” means of accomplishing a task (maximizing the
land grab to form Carthage). Problems such as this occupied the efforts of some
of the greatest minds of the late seventeenth and early eighteenth centuries. The
differential calculus of Isaac Newton and Gottfried Wilhelm Leibniz succeeded in
solving many such problems; however, some of them demanded a new calculus, later
to be labeled calculus of variations. Some of the early optimization problems that
motivated the development of the calculus of variations include:

e The shape of an object moving through a fluid to minimize resistance (Isaac
Newton in 1687). See Section 10.2.

o The brachistochrone problem to determine the shape of a wire to minimize
travel time of a sliding mass (Johann Bernoulli, Gottfried Wilhelm Leibniz, Isaac
Newton, Jacob Bernoulli, and Guillaume de ’Hopital in 1696). See Section 2.2.

e Minimal surface shapes (Leonhard Euler in 1744). See Section 2.5.2.

Comprehensive treatment of optimization problems had to await the arrival of
the digital computer in the latter half of the twentieth century. In the intervening
two hundred years, however, the calculus of variations revolutionized mechanics
and physics through the development and application of de Maupertuis’s least
action principle, later refined to become Hamilton’s principle, which will occupy
our considerations in Part II of this text. It is remarkable that this mathematical
framework, marked by an enduring elegance, is capable of encapsulating many phys-
ical and optimization principles of which its inventors could have never conceived.
This is the “miracle of the appropriateness of the language of mathematics to the
formulation of the laws of physics” that Physics Nobel Laureate Eugene Wigner
spoke of in 1960. The “miracle” of variational methods is stronger than ever today,
in particular as formal optimization techniques permeate more and more areas of
science, engineering, and economics. As such, the calculus of variations has come
full circle; originally conceived to formally address a limited set of early optimization
problems, variational methods now provide the mathematical foundation and frame-
work to treat modern, large-scale optimization problems. Every day we optimize
our decisions, activities, processes, and designs; therefore, variational methods are
proving to be an indispensable tool in providing a formal basis for optimization
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1.2 Introduction 7

along with providing the foundation for an impressive array of physical principles
that encompass classical mechanics and modern physics.

1.2 Introduction

With respect to its strong ties to applications, this treatment of the calculus of
variations will emphasize three themes. First, formulating many problems in the
physical sciences and engineering from first principles® leads naturally to variational
forms. Second, these variational forms often provide additional physical insight that
is not readily apparent from the equivalent, typically more familiar, differential
formulation. Third, the variational approach to optimization and control supplies
a general and formal framework within which to apply such principles to a broad
spectrum of diverse fields. Variational methods furnish the mathematical tools to
both encapsulate a wide variety of physical systems and processes under a unified
principle, known as Hamilton’s principle, and to provide a framework for their
optimization and control. This is because the fundamental principles underlying so
much of classical and modern physics, as well as optimization and control, are based
on extremum principles to which the calculus of variations supplies an unrivaled
mathematical framework that is tailor-made for their treatment.

This text can be divided into three distinct parts: Part I addresses the variational
methods themselves and Parts II and III treat the applications of such methods.
In the remainder of Chapter 1, three examples are formulated to instill the need
for the calculus of variations to the reader who is new to the subject. The first
two examples are based on physical principles, and the third is an optimization
problem. In addition, a review of material from differential calculus related to
finding extrema of functions with and without constraints is provided. This material
serves as the basis for developing similar techniques for functionals in the calculus
of variations. There is also a review of integration by parts and a proof of the
fundamental lemma of the calculus of variations along with a review of self-adjoint
differential operators. Chapter 2 encompasses all of the mathematical techniques
necessary to solve these examples and treat numerous other problems that arise in
the calculus of variations. The applications-minded reader will be pleased to note that
the relatively compact Chapter 2 contains all of the necessary material required for
a scientist or engineer to become proficient in applying these variational methods
to practical and research areas that utilize variational calculus. Part I closes with
a brief account of approximate and numerical methods as applied to variational
methods in Chapter 3. In Part I, encompassing Chapters 4 through 9, we take a rather
long journey through the application of variational methods to physical principles.
Chapter 4 provides the physical centerpiece, Hamilton’s principle, that forms the
foundation for the physical applications treated throughout Part II. The remaining
chapters in this part address classical mechanics of nondeformable and deformable
bodies, stability of dynamical systems, optics and electromagnetics, modern physics,
and fluid mechanics. At the risk of overwhelming the reader, the breadth of these

3 When we use the phrase “first principles” in physical contexts, as is the case here, we mean starting
directly from established physical laws, that is, without assumptions, approximations, or empirical
modeling.
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8 1 Preliminaries

topics is intended to illustrate the range and variety of fields that yield to variational
methods. Part IIT of the text is devoted to applying the calculus of variations to a
variety of applications in optimization. These applications include optimization and
control, image processing, data analysis, and grid generation for numerical methods.
Whereas Chapter 2 contains a cohesive treatment of the fundamental mathematical
methods required, which is of use to all readers, the subsequent applications-oriented
material is designed such that each chapter largely stands on its own and does not
depend on material other than that in Chapter 2 (and Chapter 4 for Chapters 5
through 9, and Chapter 10 for Chapters 11 and 12). Interestingly, the ordering of
the topics of this text, which is intended to reflect a logical progression through the
material, also roughly follows their chronological development historically.

1.3 Motivation

Before developing the mathematical techniques required to solve variational prob-
lems, it is instructive to formulate a few such problems. In doing so, we will illustrate
that formulating these problems from first principles leads naturally to variational
forms, thereby motivating the need for an ability to solve variational problems. We
consider two physical scenarios and one optimization problem that will illustrate
what a functional is and that will highlight some of the issues requiring attention in
the remainder of the text.

1.3.1 Optics

Optics is an excellent example in which to illustrate the difference between differ-
ential and variational calculus. We utilize differential calculus when finding extrema,
that is, minimums and maximums, of functions. In this case we differentiate the
function, set it equal to zero, and seek the values of the independent variable(s)
where the function is an extremum. As you will see, variational calculus is utilized
when finding extrema of functionals, where a functional is a definite integral involving
an unknown function and its derivatives. In the case of calculus of variations, we seek
the function for which the functional is an extremum.

It will be shown that when we apply Fermat’s principle of optics, which states
that the path of light between two points is the one that requires the minimum travel
time,* results in a problem in differential calculus if the media through which the
light is traveling are homogeneous and a variational calculus problem if the medium
is nonhomogeneous.

To apply Fermat’s principle, we seek to minimize the travel time 7 [u(x)] of light
along all the possible paths u(x) that the light could take through a medium between
the points xo and x; at times fg and ¢, respectively. This requires us to minimize

([ ds (el
T[u(x)]_/to dt_/xo o) _A c ds, (1.1)

0

4 In fact, the travel time is not always a minimum, which is an important subtlety that we will return
to in due course.
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Figure 1.1. Path of light through a medium with variable index of refraction.
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Figure 1.2. Path of light through two homogeneous media.

where v(x,u) is the speed of light in the medium, c is the speed of light in a vacuum,
n(x,u) is the index of refraction in the medium, and ds is a differential element along
the path u(x) as illustrated in Figure 1.1. Equation (1.1) sums (through integration)
the time it takes light to travel along each infinitesimally short element ds of the path
u(x) to obtain the total travel time 7[u(x)].

First, let us consider light traveling through two homogeneous media that each
have constant index of refraction with their interface coinciding with the x-axis as
shown in Figure 1.2. Because the indices of refraction n1 and n;, are constant in their
respective media, the light travels along a straight path through each medium. That
is, the path having the shortest travel time is the same as that having the shortest
length in a homogeneous medium. For fixed end points (xg,u0) and (x1,u1), therefore,
we seek to find the value of x where the actual path of the light intersects with the
interface between the two media. With constant indices of refraction, the travel time

(1.1)is
1 by X1
T(x)=—[n1/ ds—l—nz/ ds]
c X0 X

1
= E [Ill@] + I’lzﬂz]

1
T(x)=~ —x0)2 4+ 12 —x0)2+u?.
(%) " [nl\/(x X0)* +uy + nz\/(xl x)-+ ”1]
Accordingly, the travel time 7 (x) is an algebraic function of x, and we use differential

calculus to minimize it. We seek the value of x for which 7(x) is a minimum
corresponding to the value of x where d7T /dx = 0. Evaluating dT' /dx = 0 leads to

1 —-1/2 1 -1/2
Enl [(x —x0)> + ué] [2(x —x0)] + 5”2 [(xl —x0)%+ u%] [-2(x1 —x)] =0.
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10 1 Preliminaries

Note that the square root factors are the lengths £; and ¢,, and given that
X—xg=4~£18in¢1, x1—x=4~rsin¢;
from the geometry, we have
n . np .
—(l1sing1) = ——(€281n¢3).
4 %)
This leads to Snell’s law for two homogenous media

nysing = ny sing;,

which indicates that the ratio of the sines of the angles of incidence and refraction is

the same as the ratio of the indices of refraction in the two homogeneous media.
Now consider the general case with a variable index of refraction n(x,u)

throughout the medium, in which case Fermat’s principle (1.1) becomes

X1 X1 du

2
Tux)] = %/ n(x,u)ds = %f n(x,u),/1+ (E) dx.
X0 X0

The last expression follows from the fact that ds = +/dx? + du? from the geometry,
and because u = u(x), the total differential of u(x) is du = %dx. This leads to the result
that ds = /1 + [/ (x)]?>dx. Consequently, in the case of nonhomogeneous media, we
seek the path represented by the function u(x) that results in the minimum travel
time T'[u(x)]. Note that evaluation of the definite integral for each possible path u(x)
produces a unique scalar value for the travel time T[u(x)]. We seek the path that
produces the least travel time according to Fermat’s principle. In other words, the
functional T[u(x)], which is a definite integral involving an unknown function u(x),
is to be minimized. This requires calculus of variations.

Observe that the variational form of the governing equation arises naturally
from formulating the problem from first principles. That is, applying the physical law
(Fermat’s principle) directly leads to the variational form. In summary, we see that
finding extrema of an algebraic function is a problem in differential calculus, while
finding extrema of a functional (definite integral) is a problem in variational calculus.

1.3.2 Shape of a Liquid Drop

Second, let us consider the shape that a liquid drop takes when placed on a smooth
horizontal surface as shown in Figure 1.3. The shape of the liquid drop will be
axisymmetric about the vertical u-axis and be such that the total energy of the drop
is a minimum.

The two forms of energy of the liquid drop are that due to its potential energy
under a gravitational field and the surface energy due to surface tension at the liquid—
gas interface. First, let us consider the potential energy of the drop. The potential
energy per unit volume of a horizontal portion of the drop with differential thickness
du is pgu(r), and the volume of this infinitesimally thin portion is nwridu. Here, p
is the density of the liquid, g is acceleration due to gravity, and u(r) is the vertical
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