This volume provides a state-of-the-art summary of biogeochemical dynamics at major river-coastal interfaces for advanced students and researchers. River systems play an important role (via the carbon cycle) in the natural self-regulation of Earth’s surface conditions by serving as a major sink for anthropogenic CO₂. Approximately 90 percent of global carbon burial occurs in ocean margins, with the majority of this thought to be buried in large delta-front estuaries (LDEs). This book provides information on how humans have altered carbon cycling, sediment dynamics, CO₂ budgets, wetland dynamics, and nutrients and trace element cycling at the land-margin interface. Many of the globally important LDEs are discussed across a range of latitudes, elevations, and climates in the drainage basin, coastal oceanographic setting, and nature and degree of human alteration. It is this breadth of examination that provides the reader with a comprehensive understanding of the overarching controls on major river biogeochemistry.

Thomas S. Bianchi is a Professor in the Department of Geological Sciences at the University of Florida, Gainesville, where he holds the Jon and Beverly Thompson Endowed Chair of Geological Sciences. His general areas of expertise are organic geochemistry, biogeochemical dynamics of aquatic food chains, carbon cycling in estuarine and coastal ecosystems, and biochemical markers of colloidal and particulate organic carbon. He has published more than 130 articles in refereed journals and 4 books, including *Biogeochemistry of Gulf Mexico Estuaries* (1999, lead co-editor with Pennock and Twilley), *Biogeochemistry of Estuaries* (2007), *Hypoxia in the Northern Gulf of Mexico* (2010, co-author with Dale et al.), and *Chemical Biomarkers in Aquatic Ecosystems* (2011, lead co-author with Canuel). In 2012, he was elected as a Fellow of the American Association for Advancement of Science.

Mead A. Allison is the Director of Physical Processes and Sediment Systems at The Water Institute of the Gulf in Baton Rouge, Louisiana, and a Professor of Earth and Environmental Sciences at Tulane University, New Orleans, Louisiana. His general areas of expertise are sedimentology of the continental margin, particle-reactive radioisotopes, seafloor mapping, geomorphic impact of cyclonic storms, and the impact of human alteration of coastal environments. He has worked in riverine, coastal, estuarine, and shelf systems around the world, with particular emphasis on the continental margins of the Mississippi-Atchafalaya, Amazon, and Ganges-Brahmaputra rivers. He has published more than 80 articles in refereed journals and is the primary author (with DeGaetano and Pasachoff) of the high-school-level textbook *Earth Sciences* (2008).

Wei-Jun Cai is a Professor in the School of Marine Science and Policy at the University of Delaware, Newark. Prior to this position, he was a Professor at the University of Georgia. He studies air-sea CO₂ exchange, carbon cycling, and ocean acidification in coastal waters and marine sediments and develops sensors for carbon cycle research. He has worked in coastal systems around the world, including the U.S. southeastern rivers and shelf, the Mississippi River plume and northern Gulf of Mexico shelf system, the South and East China Seas, and the Arctic Ocean. He has published more than 80 articles in refereed journals. Cai is currently Associate Editor for the journal *Marine Chemistry*. He has served on many national committees and is currently a member of the U.S. Carbon Cycle Science Steering Group.
To our families for their unending support and patience through the years.

“No man ever steps in the same river twice, for it’s not the same river and he’s not the same man.”

– Heraclitus
BIOGEOCHEMICAL DYNAMICS AT
MAJOR RIVER-COASTAL
INTERFACES

Linkages with Global Change

Edited by

THOMAS S. BIANCHI
University of Florida, Gainesville

MEAD A. ALLISON
The Water Institute of the Gulf, Baton Rouge, and Tulane University, New Orleans

WEI-JUN CAI
University of Delaware
Contents

List of Contributors ix
Preface xiii

SECTION I. INTRODUCTION

1 An introduction to the biogeochemistry of river-coastal systems 3
T. S. Bianchi, M. A. Allison, and W.-J. Cai

SECTION II. WATER AND SEDIMENT DYNAMICS FROM SOURCE TO SINK

2 Water and sediment dynamics through the wetlands and coastal water bodies of large river deltaic plains 21
M. A. Allison, A. Kolker, and E. Meselhe

3 Freshwater and sediment dispersal in large river plumes 55
R. D. Hetland and T. J. Hsu

4 Shelf and slope sedimentation associated with large deltaic systems 86

5 Changjiang (Yangtze) and Huanghe (Yellow) Rivers: historical reconstruction of land-use change and sediment load to the sea 118
H. Wang, Z. Yang, and N. Bi

6 Flux and fate of the Yellow (Huanghe) River–derived materials to the sea: impacts of climate change and human activities 138
P. Liu and H. Wang

7 Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes 155
W.-J. Cai, C. T. Arthur Chen, and A. Borges

8 Impacts of watershed processes on exported riverine organic carbon 174
N. Blair and E. L. Leithold
Contents

9 Black carbon in coastal and large river systems
S. Mitra, A. R. Zimmerman, G. Hunsinger, and W. R. Woerner 200

SECTION III. EASTERN HEMISPHERE SYSTEMS

10 Carbon biogeochemistry in the continuum of the Changjiang (Yangtze) River watersheds across the East China Sea
J. Zhang, Y. Wu, G. L. Zhang, and Z. Y. Zhu 237

11 Dynamics of phytoplankton blooms and nutrient limitation in the Pearl River (Zhujiang) estuarine coastal waters
K. Yin, J. Xu, Z. Lai, and P. J. Harrison 274

12 The Mekong River and its influence on the nutrient chemistry and matter cycling in the Vietnamese coastal zone

13 Physical dynamics and biogeochemistry of the Pearl River plume
M. Dai, J. Gan, A. Han, H. S. Kung, and Z. Yin 321

14 The evolution of carbon signatures carried by the Ganges-Brahmaputra river system: a source-to-sink perspective
V. Galy, C. Hein, C. France-Lanord, and T. I. Eglinton 353

15 Carbon and nutrient fluxes across tropical river-coastal boundaries
D. M. Alongi, S. Bouillon, C. Duarte, A. Ramanathan, and A. I. Robertson 373

SECTION IV. WESTERN HEMISPHERE SYSTEMS

16 Sediment, organic carbon, nutrients, and trace elements: sources, transport, and biogeochemical cycles in the lowermost Mississippi River

17 Climate change effects on the ecology of the Mississippi River Delta

18 Nutrient and carbon dynamics in a large river-dominated coastal ecosystem: the Mississippi-Atchafalaya River system
S. E. Lohrenz, W.-J. Cai, S. Chakraborty, K. Gundersen, and M. C. Murrell 448

19 Sedimentary carbon dynamics of the Atchafalaya and Mississippi River Delta system and associated margin
T. S. Bianchi, M. Goñi, M. A. Allison, N. Chen, and B. A. McKee 473

20 Composition and fluxes of carbon and nutrient species from the Yukon River basin in a changing environment
L. Guo, R. G. Striegl, and R. Macdonald 503

21 Fluxes, processing, and fate of riverine organic and inorganic carbon in the Arctic Ocean
P. J. Hernes, R. M. Holmes, P. A. Raymond, R. G. M. Spencer, and S. E. Tank 530
Contents

22 Geochemistry of the Congo River, estuary, and plume
 R. G. M. Spencer, A. Stubbins, and J. Gaillardet 554

23 The Nile delta in the anthropocene: drivers of coastal change and impacts on
 land-ocean material transfer
 W. Moufaddal 584

24 Fate of nutrients in the aquatic continuum of the Seine River and its estuary:
 modeling the impacts of human activity changes in the watershed
 J. Garnier, P. Passy, V. Thieu, J. Callens, M. Silvestre, and G. Billen 606

25 Anthropogenic changes in sediment and nutrient retention in the Rhine delta
 H. Middelkoop, M. van der Perk, and G. Erkens 629

Index 651
List of Contributors

M. A. Allison The Water Institute of the Gulf and Tulane University
D. M. Alongi Australian Institute of Marine Science
N. Bi College of Marine Geosciences, Ocean University of China
T. S. Bianchi Department of Geological Sciences, University of Florida
G. Billen CNRS/UPMC, UMR7619 Sisyphe
N. Blair Civil and Environmental Engineering and Earth and Planetary Sciences, Northwestern University
D. Bombar Ocean Sciences Department, University of California Santa Cruz
A. Borges University of Liège, Chemical Oceanography Unit, Institut de Physique
S. Bouillon Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel
W. P. Broussard III Institute for Coastal Ecology and Engineering, University of Louisiana Lafayette
W.-J. Cai The University of Delaware/School of Marine Science and Policy
J. Callens CNRS/UPMC, UMR7619 Sisyphe
S. Chakraborty School for Marine Science and Technology, University of Massachusetts, Dartmouth
C. T. Arthur Chen National Sun Yat-sen (Zhongshan) University, Marine Geology and Chemistry
N. Chen Department of Natural Sciences, University of Maryland Eastern Shore
D. R. Corbett Department of Geological Sciences, Institute of Coastal Science and Policy, East Carolina University
M. Dai State Key Laboratory of Marine Environmental Science, Xiamen University
J. W. Day, Jr. Department of Oceanography and Coastal Sciences, Louisiana State University
J. W. Dippner Leibniz Institute for Baltic Sea Research Warnemünde
List of Contributors

S. Duan Earth System Science Interdisciplinary Center, University of Maryland
C. Duarte UWA Oceans Institute, The University of Western Australia (M470)
T. I. Eglinton Geological Institute, Department of Earth Sciences, ETH Zurich
G. Erkens Deltares, Utrecht, The Netherlands
C. France-Lanord CRPG UPR 2300 CNRS/INSU, Université de Lorraine
J. Gaillardet Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot
V. Galy Woods Hole Oceanographic Institution
J. Gan Department of Mathematics and Division of Environment, Hong Kong University of Science and Technology
J. Garnier CNRS/UPMC, UMR7619 Sisyphe
M. Goñi College of Oceanic and Atmospheric Sciences, Oregon State University
S. L. Goodbred, Jr. Vanderbilt University, Nashville, TN
K. Gundersen Department of Marine Science, University of Southern Mississippi, Stennis Space Center
L. Guo School of Freshwater Sciences, University of Wisconsin
D. Nhu Hai Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology
A. Han State Key Laboratory of Marine Environmental Science, Xiamen University
P. J. Harrison Atmosphere, Marine and Coastal Environment Program, Hong Kong University of Science and Technology
C. Hein Woods Hole Oceanographic Institution
P. J. Hernes Department of Land, Air and Water Resources, University of California
R. D. Hetland Department of Oceanography, Texas A&M University
R. M. Holmes Woods Hole Research Center
T. J. Hsu Center for Applied Coastal Research, Civil and Environmental Engineering, University of Delaware
G. Hunsinger Department of Geology and Geophysics, Yale University
A. Kolker Louisiana Universities Marine Consortium (LUMCON)
S. A. Kuehl Virginia Institute of Marine Science, Greta Point, VA
List of Contributors

H. S. Kung Atmosphere, Marine and Coastal Environment Program, Hong Kong University of Science and Technology

Z. Lai School of Marine Sciences, Sun Yat-sen (Zhongshan) University

N. Ngoc Lam Institute of Marine Geology and Geophysics, Vietnam Academy of Science and Technology

E. L. Leithold Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University

P. Liu Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University

S. E. Lohrenz School for Marine Science and Technology, University of Massachusetts, Dartmouth

N. Loick-Wilde School of Biology, Georgia Institute of Technology

R. Macdonald Institute of Ocean Sciences

B. A. McKee Department of Marine Sciences, University of North Carolina

E. Meselhe Department of Civil Engineering, University of Louisiana Lafayette

H. Middelkoop Department of Physical Geography, Utrecht University

S. Mitra Geological Sciences, East Carolina University

W. Moufaddal National Institute of Oceanography and Fisheries (NIOF), Egypt

M. C. Murrell US EPA Gulf Ecology Division

C. A. Nittrouer School of Oceanography, Department of Earth and Space Sciences, and Quaternary Research Center, University of Washington

A. S. Ogston School of Oceanography, University of Washington

P. Passy CNRS/UPMC, UMR7619 Sisyphe

M. van der Perk Department of Physical Geography, Utrecht University

A. Ramanathan School of Environmental Science, Jawaharlal Nehru University

P. A. Raymond Yale School of Forestry and Environmental Studies

A. I. Robertson School of Plant Biology, The University of Western Australia

B. E. Rosenheim Department of Earth and Environmental Sciences, Tulane University

G. P. Shaffer Department of Biological Sciences, Southeastern Louisiana University

A. M. Shiller Department of Marine Science, University of Southern Mississippi, Stennis Space Center
List of Contributors

M. Silvestre CNRS/UPMC, UMR7619 Sisyphe
R. G. M. Spencer Woods Hole Research Center
R. G. Striegl US Geological Survey
A. Stubbins Skidaway Institute of Oceanography, University of Georgia
S. E. Tank Department of Geography, York University
V. Thieu CNRS/UPMC, UMR7619 Sisyphe
J. M. Visser Institute for Coastal Ecology and Engineering, School of Geosciences, University of Louisiana Lafayette
M. Voss Leibniz Institute for Baltic Sea Research
J. P. Walsh Department of Geological Sciences, Institute of Coastal Science and Policy, East Carolina University
H. Wang College of Marine Geosciences, Ocean University of China
W. R. Woerner Department of Geosciences, Stony Brook University
Y. Wu State Key Laboratory of Estuarine and Coastal Research, East China Normal University
J. Xu Atmosphere, Marine and Coastal Environment Program, Hong Kong University of Science and Technology
Z. Yang College of Marine Geosciences, Ocean University of China
K. Yin School of Marine Sciences, Sun Yat-sen (Zhongshan) University
Z. Yin State Key Laboratory of Marine Environmental Science, Xiamen University
G. L. Zhang College of Chemistry and Chemical Engineering, Ocean University of China
J. Zhang State Key Laboratory of Estuarine and Coastal Research, East China Normal University
Z. Y. Zhu State Key Laboratory of Estuarine and Coastal Research, East China Normal University
A. R. Zimmerman Department of Geological Sciences, University of Florida
Preface

Approximately 87% of Earth’s land surface is connected to the ocean by rivers. Over the past 60 years, increases in the human population have had severe, globally significant effects on large-river systems through enhanced fertilizer usage, damming, deforestation, and many other land-use changes. Many countries in the world are experiencing potable and agricultural water shortages, particularly in Asia, which contains 30% ($13,500 \times 10^9$ m3 yr$^{-1}$) of the world’s ($42,700 \times 10^9$ m3 yr$^{-1}$) renewable water resources. The world’s 25 largest rivers drain approximately half of the continental surface and transport approximately 50% of the freshwater and 40% of the particulate materials entering the ocean. Moreover, it has been estimated that 80% of the total organic carbon preserved in marine sediments occurs in “terrigenous-deltaic” or large delta-front estuaries (LDEs).

Organic carbon (OC) burial in marine sediments is only second to silicate weathering and subsequent carbonate precipitation as sink of atmospheric CO$_2$, and much of this occurs in deltaic regions of the world. Thus rivers play a vital role, delivering a large flux of OC from the continents to the oceans. Recent work has also documented global decreases in water and/or sediment discharge to the coastal ocean in numerous LDEs such as the Mississippi, Nile, Indus, Changjiang, and Huanghe systems. Although humans have increased riverine sediment transport within the continents through soil erosion by an estimated 2.3 ± 0.6 Pg yr$^{-1}$, the actual amount reaching the ocean has decreased by 1.4 ± 0.3 Pg yr$^{-1}$, mainly as a result of dams and reservoirs. These reductions play an important role in deltaic coastal retreat, where a large fraction of the human population lives, and which, due to their low elevation, are highly susceptible to rising sea levels. Consequently, there has been increased interest in understanding how the flux of materials from rivers to the ocean have been altered, including global community programs such as the International Geosphere Biosphere Programme (IGBP) and its major project, Land Ocean Interaction in the Coastal Zone (LOICZ). A number of investigations have demonstrated relationships between fisheries’ yields and the high nutrient loads and freshwater inputs associated with LDEs. For example, a great fraction of the harvested secondary production in the Gulf of Mexico “fertile crescent” is derived from estuarine ecosystems, including areas on the shallow shelf influenced by the Mississippi-Atchafalaya river plumes, as has been found for other fisheries linked with plumes from rivers such as the Nile, Mekong, and the Changjiang, just to mention a few.

The coastal ocean is a dynamic region where the rivers, estuaries, ocean, land, and atmosphere interact. Although relatively small in area, this region, having 30% of the total net oceanic productivity, supports as much as 90% of the global fish catch. In particular, LDEs have historically played an important role in the advance of human civilizations (via trade, transportation, and food resources). This relationship between humans and rivers began some 5,000 years ago with the demands of
hydraulic power in Mesopotamia, as well as in the Nile, Huanghe, and Indus valleys. It has been estimated that approximately 61% of the world population lives along the coastal boundary. By 2025, an estimated 75% of the world’s population is expected to live in the coastal zone, with many of the remaining 25% living near major rivers. One of the most challenging issues concerning large river fluxes is to better understand the presumably major changes that they have undergone over the Anthropocene as a result of land-use changes (agriculture and urbanization) and river basin and delta alterations, and the resultant impact of these changes on the land-ocean material transfer term, both quantitatively and qualitatively.

Our main objectives in this book are to provide the reader with a comprehensive overview of what is known about the biogeochemical processes of the major LDEs around the world – the natural and anthropogenic factors that control and regulate them, in the western and eastern hemispheres. Thus we have divided this book into the following four sections: Section I. Introduction; Section II. Water and Sediment Dynamics from Source to Sink; Section III. Eastern Hemisphere Systems; and Section IV. Western Hemisphere Systems. In Section I we provide the reader with an overview of how we define these regions, why they are important to the global carbon cycle, and how climate change may be impacting these systems as they are changing rapidly in the Anthropocene. In Section II, the chapters primarily address the physical processes that determine how fluvial inputs of water, sediment, carbon, and nutrients are modified by tidal modulations, ocean wave incursion, wind-driven currents, estuarine circulation, and passage through wetlands and shallow water bodies and are then distributed along and across the upper continental margin. These chapters address how these processes control the fate of nutrients, sediments, and plume waters, including hydrodynamic sorting processes that control the fate of particulate and dissolved organic carbon sources (e.g., terrestrial, marine, and black). Section III, which focuses on LDEs in the Eastern Hemisphere, provides a comprehensive view of the biogeochemical dynamics of major rivers that drain the Himalayas, such as the Changjiang, Huanghe, Pearl, Ganges-Bramaputra, and Mekong, and empty in a range of coastal settings from tropical to temperate. These systems are being rapidly urbanized, owing to the highest rates of population growth in the world, and also are experiencing the most rapid rates of dam building; these factors are discussed in the context of comparing natural versus anthropogenic factors and how these processes are likely to be modulated by climate change. Finally, Section IV, focused on LDEs in the Western Hemisphere, is the largest section of the book, because there they have been the focus of considerably more biogeochemical research. Once again, the chapters provide the reader with an excellent overview of what is known about the biogeochemical dynamics of LDEs such as the Nile, Mississippi-Atchafalaya, Yukon, Congo, Reine, Seine, and many Arctic systems. We believe this is the most comprehensive presentation to date of how large-river systems are being altered globally due to human and climate change and also provides important information on the role of these systems in understanding the global carbon cycle.

Our special thanks go to the authors of each chapter, who supported our overall goal of providing the most comprehensive view of the biogeochemical cycling of the large-river LDEs across the globe. We would also like to thank the editors we worked with at Cambridge University Press, Amanda O’Connor, and Adrian Pereira at Aptara Inc., for their invaluable guidance through this effort.