Pension systems are under serious pressure worldwide. This pressure stems not only from the well-known trend of population aging, but also from those of increasing heterogeneity of the population and increasing labor mobility. The current economic crisis has aggravated these problems, thereby exposing the vulnerability of many pension schemes to macroeconomic shocks. This book reconsiders the multi-pillar pension scheme against the background of these pressures. It adopts an integral perspective and asks how the pension system as a whole contributes to the three basic functions of pension schemes: facilitating life-cycle financial planning, insuring idiosyncratic risks and sharing macroeconomic risks across generations. It focuses on the optimal balance between the various pension pillars and on the optimal design of each of the schemes. It sketches a number of economic trade-offs, showing that countries may opt for different pension schemes depending on how they react to these trade-offs.

Lans Bovenberg is Professor of Economics at Tilburg University. He founded the research network Netspar (Network for Studies on Pensions, Aging and Retirement).

Casper Van Ewijk is Professor of Economics at the University of Amsterdam and Deputy Director of CPB Netherlands Bureau for Economic Policy Analysis.

Ed Westerhout is project leader of the Netspar theme “Multi-pillar Pension Schemes and Macroeconomic Performance” at CPB Netherlands Bureau for Economic Policy Analysis.
The Future of Multi-Pillar Pensions

Edited by

LANS BOVENBERG, CASPER VAN EWIJK AND ED WESTERHOUT
Contents

- **List of figures**
 page vii
- **List of tables**
 x
- **List of boxes**
 xi
- **List of contributors**
 xii

1. Introduction

Ed Westerhout

Part I The multi-pillar pension scheme

2. Population aging and financial and social sustainability challenges of pension systems in Europe: a cross-national perspective
 Asghar Zaidi

3. The World Bank’s pension policy framework and the Dutch pension system: a paradigm for the multi-pillar design?
 Richard Hinz

4. Credit crisis and pensions: international scope
 Nicholas Barr

5. Designing the pension system: conceptual framework
 Lans Bovenberg and Casper Van Ewijk

Part II Intergenerational risk sharing and distribution

6. Private versus public risk sharing: should governments provide reinsurance?
 Henning Bohn
Contents

7 The redistribution of macroeconomic risks by Dutch institutions
Leon Bettendorf and Thijs Knaap
224

8 The consequences of indexed debt for welfare and funding ratios in the Dutch pension system
Roel Beetsma and Alessandro Buccion
259

Part III
Pensions and financial planning over the life cycle

9 Rational pensions for irrational people: behavioral science lessons for the Netherlands
Zvi Bodie and Henriëtte Prast
299

10 Opportunities for improving pension wealth decumulation in the Netherlands
Jeffrey R. Brown and Theo Nijman
330

Part IV
The future of multi-pillar pension systems

11 The future of multi-pillar pension systems
Lans Bovenberg and Casper van Ewijk
373

Index
419
Figures

2.1 The demographic old-age dependency ratio (Number of 65+/Number of 15–64) across 27 EU countries, 1960, 2010 and 2060 page 23

2.2 Projected changes in the age-related public expenditures (on pensions, health care, long-term care, education and unemployment), as percentage of GDP, during 2010–2060 25

2.3 Unemployment rate in percent, during 2006, 2009 and 2011 27

2.4 Government deficit (-) / surplus (+) in EU countries, in terms of percentage of GDP, 2006, 2009 and 2010 28

2.5 Sustainability gap (S2 indicator) across EU countries and the contribution of the IBP and the LTC, 2009 31

2.6 Changes in the benefit ratio percent (average public pensions/average economy-wide wage) across 27 EU countries, for the period 2007–2060 33

2.7 Changes in the benefit ratio percent (average public pensions/average economy-wide wage) across 27 EU countries, for the period 2007–2046 35

2.8 Changes in the theoretical replacement rate (net), for the period 2006–2046, for a stylized full career male worker on average wages retiring at 65 38

5.1 Expected exposure to financial and wage risks over the life cycle (initial wealth = 100) 153

7.1 Discounted, expected, lifetime net benefit (thousands of euros) 233

7.2 Two shocks in the rate of productivity, relative to the base path, administered in the year 2016 236
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Discounted, expected, lifetime net benefit change from a temporary shock on productivity, expressed as a percentage of consumption on the base path</td>
<td>238</td>
</tr>
<tr>
<td>7.4</td>
<td>Discounted, expected, lifetime net benefit change from an enduring shock on productivity, expressed in percentage change in consumption</td>
<td>239</td>
</tr>
<tr>
<td>7.5</td>
<td>Discounted, expected, lifetime net benefit change from a one-time decrease in asset values of 8.75 percent, expressed in percentage consumption change</td>
<td>241</td>
</tr>
<tr>
<td>7.6</td>
<td>Two shocks in the (real) interest rate, administered in the year 2016</td>
<td>243</td>
</tr>
<tr>
<td>7.7</td>
<td>A spike in the interest rate in 2016 results in these discounted, expected, net benefits changes</td>
<td>244</td>
</tr>
<tr>
<td>7.8</td>
<td>A general increase in interest rates starting in 2016 results in these discounted, expected, net benefits changes</td>
<td>246</td>
</tr>
<tr>
<td>7.9</td>
<td>Discounted, expected, lifetime net benefit change from a shock in mortality</td>
<td>248</td>
</tr>
<tr>
<td>7.10</td>
<td>Discounted, expected, lifetime net benefit change from a rare disaster that has permanent effects on productivity</td>
<td>251</td>
</tr>
<tr>
<td>7.11</td>
<td>Discounted, expected, lifetime consumption change after a rare disaster that has permanent effects on productivity</td>
<td>253</td>
</tr>
<tr>
<td>7.12</td>
<td>Government debt as a percentage of GDP, on the base path and in three scenarios with shocks: the wealth shock from Subsection 7.3.2, interest shock 1 from Figure 7.6 and the rare disaster of Subsection 7.4.1</td>
<td>254</td>
</tr>
<tr>
<td>7.13</td>
<td>Discounted, expected, lifetime net benefit change from a mixed shock in mortality</td>
<td>256</td>
</tr>
<tr>
<td>8.1</td>
<td>Fund properties: price shocks only</td>
<td>281</td>
</tr>
<tr>
<td>8.2</td>
<td>Welfare comparison: price-indexed bonds versus benchmark</td>
<td>283</td>
</tr>
</tbody>
</table>
List of figures

- 8.3 Household consumption 285
- 8.4 Fund properties: full set of shocks 289
- 8.5 Welfare comparison versus benchmark 292
- 9.1 Pension plan decision tree 321
- 11.1 Typology of pension systems 396
Tables

2.A.1 Impact of pension reforms on net replacement rates by earnings level, stylized estimates from OECD for full career workers, 2009 page 43

3.1 The pillars of old-age income security 54
3.2 Summary of the updated policy framework 69
6.1 Pension systems and the role of government 209
7.1 Key parameters of the Gamma OLG model 232
7.2 The parameters of the rare disaster 250
8.1 Benchmark calibration of the parameters 275
8.2 Policy comparison: price shocks only (%) 282
8.3 Average remaining life expectancy 287
8.4 Policy comparison: full set of shocks 290
11.1 Trade-offs, trends, responses and challenges 376
11.2 Optimal risk sharing and the size of pillars in alternative pension models during the decumulation stage 405
11.3 Multi-pillar pension systems 415
Boxes

4.1 Multiple risks and uncertainties facing individuals
4.2 Mechanisms for adjusting pensions
4.3 How much discretion is optimal in the design of a pension system?
4.4 Analytical errors in the advocacy of mandatory individual funded accounts
4.5 Principles for adjusting pensionable age
4.6 The balance mechanism and brake in the Swedish NDC system
4.7 The National Employment Savings Trust in the UK
Contributors

Nicholas Barr London School of Economics and Political Science
Roel Beetsma University of Amsterdam
Leon Bettendorf CPB Netherlands Bureau for Economic Policy Analysis
Zvi Bodie Boston University
Henning Bohn University of California, Santa Barbara
Lans Bovenberg Tilburg University
Jeffrey Brown University of Illinois, Urbana-Champaign
Alessandro Bucciol University of Verona
Richard Hinz The World Bank
Thijs Knaap APG Asset Management
Theo Nijman Tilburg University
Henriëtte Prast Tilburg University
Casper van Ewijk CPB Netherlands Bureau for Economic Policy Analysis
Ed Westerhout CPB Netherlands Bureau for Economic Policy Analysis
Asghar Zaidi European Centre for Advanced Research in Economics and Statistics (ECARES), Brussels