Index

A-norm, 101
absolute norm, 37
Adams–Bashforth methods, 284
Adams–Moulton methods, 284
adaptive
lp, 291
multistep methods, 289
one-step methods, 288
Simpson’s rule integration, 257
additive noise, 302
adjoint, 116
Aitken’s Δ² method, 179, 257
amplification factor, 6
amplitude error, 546
anticipatory, 307
non-, 307
approximation error, 1, 13
Archimedes’ method, 462
artificial variables
linear programming, 195
associated Legendre polynomial, 300, 543
asymptotic regime, 161, 256, 266
autocorrelation, 152
B-spline, 235, 538
back substitution, 23, 44, 215
backward error, 17, 40, 49, 52, 81
backward Euler method, 284
Bairstow’s method, 175
banana
Rosenbrock’s, 190
banded matrix, 228
basic variables
linear programming, 192
basis vector, 45
Bernoulli numbers, 253
polynomials, 253
bisection, 155
Björek pivoting, 49
Black–Scholes equation, 152, 302, 325
Boole’s rule, 244
bottom solver, 122
Box–Muller transform, 305
bracketing, 182
Broyden–Fletcher–Goldfarb–Shanno, 188
Cauchy convergence criterion, 153
Cauchy sequence, 153
ceiling function, 167, 318
characteristic equation, 365
chasing the bulge, 77
Chebyshev interpolation, 347
Chebyshev polynomial, 101, 150, 300, 497
Cholesky decomposition, 49
Clenshaw’s method, 347
code example
AdaptiveMS-test.cpp, 434
AdaptiveMS.h, 430
AdaptiveMS.cpp, 431
AdaptiveSS-test.cpp, 430
AdaptiveSS.h, 428
AdaptiveSS.cpp, 429
AdaptiveSimpson-test.cpp, 428
AdaptiveSimpson.h, 426
AdaptiveSimpson.cpp, 427
CG-test.cpp, 402
CG.h, 400
CG.cpp, 401
Cholesky-test.cpp, 387
Cholesky.h, 386
Cholesky.cpp, 386
ConvexQP-test.cpp, 426
ConvexQP.h, 420
ConvexQP.cpp, 421
FFT-test.cpp, 407
FFT.h, 405
FFT.cpp, 406
GE-test.cpp, 379
GE.h, 375
GE.cpp, 376
Givens.h, 388
GoldenSection.h, 408
GoldenSection.cpp, 408
HFRopt.cpp, 442
HSort.h, 384
HSort.cpp, 385
Householder-test.cpp, 385
Householder.H, 380
Householder.cpp, 381
Matrix.H, 373
QR-test.cpp, 393
QR.H, 389
QR.cpp, 389
RCP.H, 371
Rysfit.cpp, 438
SDEintegrate.cpp, 434
SVD-test.cpp, 400
SVD.H, 393
SVD.cpp, 393
Simplex-test.cpp, 419
Simplex.H, 413
Simplex.cpp, 414
VMM-test.cpp, 413
VMM.H, 409
VMM.cpp, 410
Vcycle-example.cpp, 402
conjugate gradient, 490
data fitting in Mahalanobis norm, 520
FFT autocorrelation, 507
FFT convolution, 496
multigrid, 490
multigrid preconditioned conjugate gradient, 490
Newton interpolation, 498

cofactor, 364
colored noise, 303
column space, 72
companion matrix, 169, 367
complete pivoting, 30
complex numbers, 369
Euler’s formula, 370
composite rule, 249
condition number, 6, 38, 501
conjugate, 94
conjugate gradients, 93
conservative polynomial, 282, 542
consistent
norm, 36
continuous
uniformly, 353
continuous function, 353
convergence
Cauchy, 153
convolution, 148
Cooley–Tukey algorithm, 141
Coulomb matrix, 332
covariance, 219, 303
matrix, 220
damped Jacobi, 118
damping, 226, 336
Davidon–Fletcher–Powell, 188
defective matrix, 57
deflation, 170
determinant, 30, 363
deviate, 305
diagonal matrix, 361
diagonalizable matrix, 56
discrete convolution, 148
discrete Fourier transform, 138
divided difference, 21, 131, 159, 242
divided differences, 132
do not use this, 24, 82, 95, 118, 125, 143, 213, 214, 230, 246, 261, 278
dot product, 361
dual, 202, 221
eigenvalue, 365
Gershgorin’s theorem, 57
inverse vector iteration, 62
power method, 62
QR algorithm, 70
shifting, 63, 80
spectrum, 57
vector iteration, 62
eigenvector, 365
inverse iteration, 62
iteration, 62
power method, 62
QR algorithm, 70
elementary operation, 4, 8
equilibrations, 34
error
amplitude error, 546
approximation, 1, 13
backward, 17, 40, 49, 52, 81
experimental, 1, 9
inherent, 9
phase error, 546
roundoff, 1
sampling, 1, 312
error function, 151, 273, 339, 340
Euclidean norm, 37
Euler’s formula, 102, 370
Euler–Maclaurin sum formula, 255
Euler–Maruyama
strong analysis, 317
weak analysis, 319
equation
Adams–Moulton, 285
adaptive multistep method, 291
adaptive Runge–Kutta, 288
adaptive Simpson’s method, 258
Aitken’s Δ² method, 179
approximation versus algorithm error, 13
Bairstow’s method, 177
bisection, 155
Broyden–Fletcher–Goldfarb–Shanno variable
metric method, 190
Cholesky decomposition, 51
calorific gradient, 97
cubic spline, 239
Index

Cambridge University Press
978-1-107-02108-2 - Numerical Analysis for Engineers and Scientists
G. Miller

Index

data fitting in norms L^1, L^2, and L^∞, 232
fast Fourier transform, 144
Gauss–Seidel iteration, 111
Gaussian elimination, 24, 28, 29
 complete pivoting, 31
 various pivoting choices, 35
Gaussian quadrature for a function with a convergent Taylor series, 266
Gaussian quadrature for a function without a convergent Taylor series, 265
Gerschgorin estimate, 59
Gerschgorin estimate with scaling, 61
Goldfarb–Idnani quadratic programming, 207
Householder reduction, 47
integration with trapezoidal sum rule, 243
inverse vector iteration, 63
irreducibility, 110
iterative convergence, 154
iterative refinement, 53
Jacobi iteration, 106
least squares fit with experimental error in y, 223
multigrid, 123
multiple shooting method, 297
Neville interpolation tableau, 130
Newton interpolation tableau, 134
Newton–Raphson, 163
numerical trustworthiness, 10
order of a convergence of a sequence, 155
order of convergence, 155
Peano kernel for integration, 250
Peano kernel for interpolation, 127
polynomial roots by complex Newton’s method, 174
propagation of errors from x and y to m and b, 227
QR for eigenvalues, 77
quadratic formula, 16
regula falsi, 157
Romberg integration, 255
secant method, 160
simple shooting method, 293
simplex method phase I, 197
simplex method phase II, 192
simplex step with matrix modification, 201
singular value decomposition, 83
strong order of Euler–Maruyama, 317
truncated SVD, 87
vector iteration, 65
vector iteration for complex eigenvalues, 67
weak order of Euler–Maruyama, 319
exchange matrix, 332
expectation, 219, 303
experimental error, 1, 9
fast Fourier transform (FFT), 141
feasible basis
linear programming, 192
Fock matrix, 332
forward Euler method, 275, 306
Fourier transform
discrete, 138
fast, 141
Frobenius matrix, 24, 199, 369
Frobenius norm, 37
Frobenius normal matrix, 169, 281, 366
fundamental theorem of algebra, 102, 126, 262
Gauss–Seidel relaxation, 111
Gaussian basis functions, 337
Gaussian elimination, 23
Gaussian normal distribution, 219
integral moments, 317
Gaussian quadrature, 259
Gauss–Chebyshev, 263
Gauss–Hermite, 264
Gauss–Laguerre, 265
Gauss–Legendre, 264
Rys, 273, 345
geometric mean, 316
geometric series, 356
Gerschgorin’s theorem, 57, 107, 169
Givens matrix, 75, 210
global discretization error, 276, 315
golden ratio, 160, 183, 185
golden section search, 184
Golub pivoting, 48
Gram–Schmidt orthogonalization, 64, 204, 216, 336
graph theory, 109
growth factor, 40
h-adaptive, 291
h.o.t., 168
Hartree–Fock–Roothaan equation, 332
Hermite interpolation, 136, 183, 249
Hermite matrix, 362
Hessenberg matrix, 368
Hessian, 186
Heun’s method, 277
Hilbert matrix, 87
Horner’s scheme, 17, 132
Householder reduction, 43
hp-adaptive, 291
Hyman’s method, 89
identity matrix, 362
improper integral, 271
induced norm, 36
infimum, 159
inherent error, 9
inner product, 361
integral remainder formula, 359
integration
Boole’s rule, 244
Gaussian quadrature, 259
Gauss–Chebyshev, 263
exchange matrix, 332
expectation, 219, 303
experimental error, 1, 9
fast Fourier transform (FFT), 141
feasible basis
linear programming, 192
Fock matrix, 332
forward Euler method, 275, 306
Fourier transform
discrete, 138
fast, 141
Frobenius matrix, 24, 199, 369
Frobenius norm, 37
Frobenius normal matrix, 169, 281, 366
fundamental theorem of algebra, 102, 126, 262
Gauss–Seidel relaxation, 111
Gaussian basis functions, 337
Gaussian elimination, 23
Gaussian normal distribution, 219
integral moments, 317
Gaussian quadrature, 259
Gauss–Chebyshev, 263
Gauss–Hermite, 264
Gauss–Laguerre, 265
Gauss–Legendre, 264
Rys, 273, 345
geometric mean, 316
geometric series, 356
Gerschgorin’s theorem, 57, 107, 169
Givens matrix, 75, 210
global discretization error, 276, 315
golden ratio, 160, 183, 185
golden section search, 184
Golub pivoting, 48
Gram–Schmidt orthogonalization, 64, 204, 216, 336
graph theory, 109
growth factor, 40
h-adaptive, 291
h.o.t., 168
Hartree–Fock–Roothaan equation, 332
Hermite interpolation, 136, 183, 249
Hermite matrix, 362
Hessenberg matrix, 368
Hessian, 186
Heun’s method, 277
Hilbert matrix, 87
Horner’s scheme, 17, 132
Householder reduction, 43
hp-adaptive, 291
Hyman’s method, 89
identity matrix, 362
improper integral, 271
induced norm, 36
infimum, 159
inherent error, 9
inner product, 361
integral remainder formula, 359
integration
Boole’s rule, 244
Gaussian quadrature, 259
Gauss–Chebyshev, 263
Index

Gauss–Hermite, 264
Gauss–Laguerre, 265
Gauss–Legendre, 264
Newton–Cotes, 244
Romberg, 253
Simpson’s 3/8 rule, 244
Simpson’s rule, 244
trapezoidal sum rule, 244, 307
Weddle’s rule, 244

interpolation
Chebyshev, 347
Hermite, 136, 183, 249
Lagrange formula, 125
barycentric form, 129
modified Lagrange formula, 128
Neville’s method, 129, 255
Newton’s method, 131
irreducible, see reducible matrix
Itô calculus, 306
Itô’s formula, 308
Itô–Taylor series, 309
Jacobi
method for eigenvalues, 81
relaxation, 105
Jacobi preconditioner, 103
Jordan block, 57
Jordan normal form, 57
Julia set, 172
Kantorovich’s theorem, 164
Karush–Kuhn–Tucker, 202
knot, 236
Krylov space, 100
Lowdin decomposition, 222, 333
Lagrange interpolation formula, 125
barycentric form, 129
modified, 128
Lagrange multipliers, 201
Lagrange remainder formula, 169, 357
Langvin equation, 302
least squares, 22, 24, 46, 48, 49, 92, 105, 111, 203, 213, 223, 230
least upper bound norm, 36
Lebesgue norm, 37, 241
left triangular matrix, 49, 368
Legendre polynomial
associated, 300, 543
Legendre polynomials, 264
Leja points, 500
likelihood, 221
linear difference equation, 281
linear programming, 191
Lipschitz condition, 164, 277, 282, 315
Lipschitz continuous, 353
local discretization error, 276
machine precision, 4
Mahalanobis
distance, 221
norm, 221
matrix, 361
banded, 228
characteristic equation, 365
cofactor, 364
companion, 169, 367
Coulomb, 332
covariance, 220
defective, 57
determinant, 363
diagonal, 361
diagonalizable, 56
eigenvalue, 365
eigenvector, 365
equilibrated, 34
exchange, 332
Fock, 332
Frobenius, 24, 199, 369
Frobenius normal, 169, 281, 366
Givens, 75, 210
Hermitian, 362
Hessenberg, 368
Hessian, 186
Hilbert, 87
identity, 362
Jordan normal form, 57
left triangular, 49, 368
matrix, 43
minor, 364
modification, 199, 209
norm, 36
normal, 56
overlap, 332
permutation, 24
positive, 113
positive definite, 367
pseudoinverse, 203, 216
reducible, 79, 108
right triangular, 23, 43, 368
similar, 367
skew Hermitian, 362
symmetric, 362
symmetric positive definite, 49, 81, 87, 93, 116, 213, 220, 269, 333, 368, 519
tridiagonal, 369
Vandermonde, 54, 92, 219, 270
mean value theorem, 355
metric
tensor, 186, 221
variable, 185
minor matrix, 364
modification, 199, 209
modified Euler method, 277
modified Lagrange interpolation formula, 128
modified Newton–Raphson, 167
Moore–Penrose pseudoinverse, 216
multiindex notation, 318, 360
multiple shooting method, 295
multiplicative noise, 302
multivariate Taylor series, 318, 360
natural norm, 36
nested multiplication, 17
Neville’s interpolation method, 129, 255
Newton map, 172
Newton’s interpolation method, 131
Newton–Cotes methods, 244
Newton–Raphson, 162
complex plane, 172
Kantorovich’s theorem, 164
modified, 167
Smale’s theorem, 165
noise
additive, 302
colored, 303
multiplicative, 302
white Gaussian distributed, 302
nonanticipatory, 307
nonbasic variables
linear programming, 192
norm, 36
A, 101
absolute, 37
consistent, 36
Euclidean, 37
Frobenius, 37
induced, 36
least upper bound (lub), 36
Lebesgue, 37, 241
Mahalanobis, 221
natural, 36
Schur, 37
submultiplicative, 36
subordinate, 36
normal equations, 24, 49, 105, 111, 214
normal matrix, 56
numerically harmless, 10
ODE
Adams–Bashforth methods, 284
Adams–Moulton methods, 284
backward Euler method, 284
forward Euler method, 275, 306
Heun’s method, 277
modified Euler method, 277
multiple shooting method, 295
Runge–Kutta method, 278
simple shooting method, 292
order
of accuracy, 245, 251, 276, 278, 311
strong, 312
weak, 312
of convergence, 154
of magnitude, 4
Oren–Sedicato, 189
orthogonal polynomials, 260
orthogonalization
Gram–Schmidt, 64, 204, 216, 336
outer product, 361
overlap matrix, 332
paranoia, 454
Parseval’s theorem, 144
partial pivoting, 30
partition of unity, 236
Peano kernel, 126, 251
permutation matrix, 24
phase error, 546
pivoting
Björck, 49
complete, 30
Golub, 48
partial, 30
Powell–Reid, 48
r r e e k , 32
scaled partial, 34
trivial, 30
polar coordinates, 369
polynomial
associated Legendre, 300
characteristic, 365
Chebyshev, 101, 150, 497
conservative, 282, 542
orthogonal, 260
Wilkinson’s, 19, 171
positive definite, 367
positive matrix, 113
Powell–Reid pivoting, 48
power method, 62
precondition, 103
Jacobi, 103
principal vector, 57
probability density function, 219
prolongation, 115
pseudoinverse, 203, 216
QR algorithm for eigenvalues, 70
QR method, 43
quadratic
equation, 16
programming, 201
Rayleigh quotient, 62
Rayleigh’s energy theorem, 144
reducible matrix, 79, 108
regula falsi, 157
residual, 41, 53, 93, 230
residual correction method, 52
restricted variables
linear programming, 192
restriction, 115
Richardson extrapolation, 252, 286, 312
right triangular matrix, 23, 43, 368
Rolle’s theorem, 126, 151, 168, 248, 354, 358, 472
Romberg integration, 253
rook pivoting, 32
Rosenbrock’s banana, 190
Rouché’s theorem, 124
rundoff error, 1
Runge–Kutta method, 278
sampling error, 1, 312
scaled partial pivoting, 34
Schur norm, 37
SDE
Euler–Maruyama, 317–320
Müistein, 318
Müistein–Talay, 320
secant method, 159
series
geometric, 356
Taylor, 357
common, 359
shifting
eigenvalue, 63, 80
similarity transformation, 60, 367
simple shooting method, 292
simplex, 194
simplex method
linear programming, 195
Simpson’s 3/8 rule, 244
Simpson’s rule, 244
singular value decomposition (SVD), 81
skew Hermitian matrix, 362
slack variables
linear programming, 192
Slater determinant, 328
Smale’s theorem, 165
smoother, 115
spectral radius, 56
spline
basic (B), 235, 538
natural cubic, 238
Störmer integration, 300
standard deviation, 6, 219, 304, 312
standard form
linear programming, 192
steepest descent, 100
stencil, 217
Stieltjes’ algorithm, 260
Stratonovich calculus, 307
strong row sum criterion, 107
submultiplicative, 36
subordinate norm, 36
subspace iteration, 72
supremum, 159
symmetric matrix, 362
symmetric positive definite, 49, 81, 87, 93, 116, 213, 220, 269, 333, 368, 519
Taylor series, 357
common, 359
integral remainder formula, 359
Lagrange remainder formula, 169, 357
multivariate, 318
multivariate with Lagrange remainder, 360
proof of Euler’s formula, 370
trapezoidal sum rule, 244, 307
triangle inequality, 58, 108, 154, 354
tridiagonal matrix, 369
trivial pivoting, 30
uniformly continuous, 353
unitary matrix, 43
Vandermonde matrix, 54, 92, 219, 270
variable metric methods, 185
Broyden–Fletcher–Goldfarb–Shanno, 188
Davidon–Fletcher–Powell, 188
Oren–Spedicato, 189
variance, 6, 152, 219, 322, 325
variance reduction, 312
varational conditions, 116
varational principle, 334
vector, 361
dot product, 361
inner product, 361
outer product, 361
principal, 57
vector iteration, 62, 72
Verlet integration, 300
Wagner–Platen analysis, 309
weak order, 312
weak row sum criterion, 107
Weddle’s rule, 244
white noise, 302
Wiener process, 304
Wilkinson’s polynomial, 19, 171, 270
zero suppression, 170
zombies, 301