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1 Numerical error

1.1 Types of error

The term “‘error” is going to appear throughout this book in different contexts. The
varieties of error we will be concerned with are:

e Experimental error. We may wish to calculate some function y(xy, ..., x,), where
the quantities x; are measured. Any such measurement has associated errors, and they
will affect the accuracy of the calculated y.

e Roundoff error. Even if x were measured exactly, odds are it cannot be represented
exactly in a digital computer. Consider 7, which cannot be represented exactly in
decimal form. We can write w ~ 3.1416, by rounding the exact number to fit 5
decimal figures. Some roundoff error occurs in almost every calculation with real
numbers, and controlling how strongly it impacts the final result of a calculation is
always an important numerical consideration.

e Approximation error. Sometimes we want one thing but calculate another, intention-
ally, because the other is easier or has more favorable properties. For example, one
might choose to represent a complicated function by its Taylor series. When substi-
tuting expressions that are not mathematically identical we introduce approximation
error.

Experimental error is largely outside the scope of numerical treatment, and we’ll
assume here, with few exceptions, that it’s just something we have to live with. Experi-
mental error plays an important role in data fitting, which will be described at length in
Chapter 8. Sampling error in statistical processes can be thought of as a type of experi-
mental error, and this will be discussed in Chapter 11.

Controlling roundoff error, sometimes by accepting some approximation error, is
the main point of this chapter, and it will be a recurring theme throughout this book.
J.H. Wilkinson [242] describes error analysis generally, with special emphasis on ma-
trix methods. An excellent and comprehensive modern text is N. J. Higham’s [104].

1.2 Floating point numbers

Binary computers represent everything in “bits” — fundamental units of measure that
can take on the values O or 1 only. A byte is a collection of 8 bits, and real numbers are
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2 Numerical error

typically stored in 4 bytes (single precision floating point) or 8 bytes (double precision
floating point). The representation of real numbers in floating point format is governed
by standards, the current one being IEEE Std. 754-2008 [1].

A decimal number like “0.1” means

0x10°+1x 107",

and in binary we can represent numbers in a similar fashion. The decimal number “23”
has a binary representation

Ix2*4+0x 23 +1x22 41 x2"+1x2°
or 10 111. The decimal number “0.1” has binary representation
Ix241x23+0x204+0x277 4.,
or
0.1100 x 273, (1.1

where the line indicates that the sequence 1100 repeats forever. There exist many num-
bers like “0.1” that can be represented in a compact fashion in decimal notation, but that
cannot be represented in a compact notation in binary.

On a binary computer, the real number “0.1” is represented in single precision as

+ 0.110011001 100110011001 101 272 | (1.2)
— ——
sign binary mantissa exponent

with the 32 bits divided as follows:

e 1 sign bit
e 23+1 mantissa bits
e 8 exponent bits.

(The notation of (1.2) may be confusing because the exponent is clearly not written in a
binary fashion. Of course it will be on a binary computer, but our concern here is with
the mantissa.) The total number of bits in this example is 33, not 32. This is because
we enforce (where possible) the following convention: the mantissa will be adjusted so
that the first bit after the decimal place is 1. This is called a normalized representation.
When this convention is respected, there is no need to store this bit — it is implicit.

In double precision, “0.1” is

+0.110011001 100110011001 100110011001 100 110011001 10011010 x 273,
(1.3)
with

e 1 sign bit
e 52+1 mantissa bits
e 11 exponent bits.
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1.2 Floating point numbers 3

Neither representation is exact, because the exact solution (1.1) cannot fit in 24 or 53
mantissa places. We will use the symbol ¢ for the number of mantissa places, with
t = 53 understood unless stated otherwise. Internal machine registers can have still
more mantissa bits. For example, the Intel Pentium uses 64 mantissa bits in its internal
floating point registers.

When a real number can be represented exactly with a machine floating point conven-
tion, it is called machine representable. If a real number is not machine representable, it
is rounded to a close machine representable number. The rounding rule used by default
on most modern desktop computers is called round ties to even. If the exact number lies
exactly between two machine representable numbers, this rounding method chooses the
machine representable number with O in the least significant bit. Otherwise, rounding
chooses the closest machine representable number.

You can see in (1.3) that this rounding took place. The least significant bits of the
exact mantissa read ...110011... where the final underlined 1 is in the 2~ ¢+ place. By
the rounding rule, the mantissa changed to ...110 10.

It is of interest to determine the maximum error that can be introduced by rounding.
To determine this, consider the two binary numbers

x; = 0.011
x2 = 0.1001 = 0.101.

x1 is the smallest number that rounds up to 0.10, and x; is the largest number that
rounds down to 0.10, with r = 2 and the round ties to even rule. These numbers both
differ from 0.10 by 0.001, or 2=¢*+1  therefore rounding introduces a mantissa error as
large as 2=+ Real numbers include also an exponent part, which we should account
for. If a number x has a value of d in the exponent,

|x — round(x)| < 27¢+D x 29, (1.4)
But, because of the normalized representation,
x| > 0.1, x 2¢ = 24! (1.5)

(the subscript 2 was used to emphasize that 0.1 here is the leading part of the binary
mantissa). Combining inequalities (1.4) and (1.5),

|x — round(x)| — ot _ 272 ~ 6.0 x 1078 single precision

By 7 |28 & 1.1 x 10716 double precision.

The expression of this rounding error as a relative error, i.e., error divided by value,
emphasizes the role of the finite mantissa.

Even if two numbers x and y were represented exactly in normalized binary form,
their sum x + y might not be. Likewise, for any function (multiplication, division, sine,
cosine, exponentiation, etc.) the result of the operation — if carried out exactly — is
unlikely to fit exactly into the finite number of mantissa places available for it. Let’s
denote x as the rounded version of x, and f the computed (hence rounded) version of
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4 Numerical error

function f(x, y). As a best case scenario, we have the situation
(&, 5) = round(f . 5))

FE3) = @) =FGE er. lefl <27,
which supposes that the function f (X, y) is as accurate as if it were computed exactly,
but then rounded to fit the available space. We will make the optimistic assumption (1.6)
that all elementary operations have an error equivalent to rounding. The number 277 is
called machine precision, and will be denoted by symbol € without subscripts.

If x and y are not machine representable, then, for example, z = x + y has errors

from the rounding of x, the rounding of y and the rounding of the sum. With z standing
for the exact sum, and Z standing for the floating point version,

(1.6)

Z = round(round(x) + round(y))
=(x(l4+e)+y(1+6)(1+ep) withall g <e=27"
~ x4 x(ex +ep) +y+yey +ep) (1.7)
I—z Az x
Z - T ox+ y

Y
€ —¢€ €,
x+x+yy++

where terms of order of magnitude €* are ignored.

It is impossible to determine the error from (1.7) alone, because the relative errors
€y, €y, and e are not known — we only know the upper bound of their magnitude. To
use that information, we need to take the absolute value of (1.7) and use the triangle

inequality:
lAZl— a €x + €y + €
Iz] x+y P xgy YT
X y
< €| + €|+ e 1.8
x_l_y‘lxl ‘x+y|>| l€+] (1.8)
§< ‘—f— Y ‘+l>e.
X+y X+y

If z = x + y is genuine addition (i.e., if the signs of x and y are identical), then 0 <
x/(x+y)<land0<y/(x+y) <l,and |x/(x +y)| + |y/(x + y)| = 1 so the error
has an upper bound of |Az/z| < 2e.

However, if the signs of x and y are different, then this is really subtraction and
|x/(x + y)| = 1. If z is a small difference in relatively large numbers then the fac-
tor |x/(x + y)| can be very large, and the calculation z can be correspondingly very
inaccurate.

The reason for this is cancellation: when two numbers are subtracted, there can be a
loss of significant figures. For example,

+0.10000;9 ~ +0.110011001 100 110011 001 101 x 273
—0.099 8519 ~ —0.110011 000 111 111000 101 000 x 273

+0.000 1510 ~ 4+0.100 111010 100 100 101010010 x 2~ ' = round(z),
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1.2 Floating point numbers 5

but

+0.110011001 100110011001 101 x 273
—0.110011000111 111000 101000 x 273

=0.000000 000100111010 100 101 x 273
=0.100 111010100 101 000 000 000 x 2712 = Z.

Round(z) and Z differ in 10 places: we find a relative error of approximately 2% or
about 1024¢. This difference is largely because upon subtraction 9 significant digits of
the result were lost (underlined). When the normalized form is reestablished, these lost
digits become zeros in the least significant figures.

Note that although there is a large loss of significant figures, this subtraction did not
in itself introduce any numerical error [123, p. 12].1 The effect of cancellation is to
amplify the errors associated with rounding the inputs x and y.

A theoretical upper bound to the error from (1.8) is

( 0.1 0.099 85

1 ~ 1
0.00015 " 0.00015 © >6 333¢,

which is pretty close to the observed error.

The error formula (1.7) for addition has a special form that can be generalized to
other functions. The idea is differential error analysis, and to understand it consider the
function

y = cos(x).
Accounting for roundoff error, the numerical result y is
y = round(cos(x)) (1.9)

and, in contrast to the expansion for addition, the exact value y = cos(x) does not
appear when (1.9) is written

y =cos(x(l +ex))(1 + €c). (1.10)

However, since €, is very small compared to 1, we could expand (1.10) in a Taylor
series. Keeping only the leading terms,

y ~ cos(x)(l 4+ €.) — xe, sin(x)
y

A 5
Y _ YTy —x tan(x)ey + €.
y y

T “If p and ¢ are represented exactly in the same conventional floating-point format, and if 1/2 < p/q < 2,
then p — ¢ too is representable exactly in the same format, unless p — ¢ suffers exponent underflow.”
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6 Numerical error
To generalize this to arbitrary unary and binary functions,
Af(x) x df\ Ax
= _—— —_— + ef
J(x) fdx] x
Ag(x, xd Ax d A
Agx.y) (__g> Ax (z_g) A e
g(x,y) gdx) x gdy) y
The factors
xdf
fdx
are called condition numbers or amplification factors. For genuine addition, we saw that
these numbers lie between 0 and 1, so they do not cause error to grow. For subtraction,
these numbers are greater than 1 in magnitude and they amplify error.
1.3 Algorithms and error

Formulas that are mathematically identical can incur different numerical errors, there-
fore to assess the numerical error associated with some function it is important to specify
completely the algorithm that will be used to evaluate it.

Example 1.1 The variance $2 of a set of observations X1, ..., X5 1S to be determined
(S is the standard deviation). Which of the formulas,

1 n
§? = : (§ x? — mz2> (1.11a)
_
i=1

[ 5
> i — )7 (1.11b)
i=1

S5 =

n—14%

with

1}’[
f=-§ Xi,
n -
i=1

is better from a numerical error point of view? We would like to ask “which formula has
the lowest error,” but this question cannot be answered. Instead, we can ask and answer
“which formula has the lowest maximum error?” This is sometimes worded “which
algorithm is more numerically trustworthy?”
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Solution

1.3 Algorithms and error

First, we note that these expressions are mathematically identical:

so any numerical differences will be due to the algorithm only.

To answer the question of numerical trustworthiness, we need to formally state the
algorithm associated with the mathematical formulas, then analyze these algorithms by

tracking the rounding errors.

The first algorithm can be written, for n = 2, ¢1 = x1 + x2, X = ¢1/2, ¢2 = x7,

2

¢3 = x%, b4 = Qo+ B3, o5 = X2, g = nos, 7 = b4 — Ps, 512 = ¢7/(n — 1). The error
associated with this algorithm might be written with differential error analysis

Ax
— EX]
X1
Axo
ke
A@p X1 Ax; x2 Axp
[ —— —_ 61
o1 $1 x1 ¢1 X2
AT Agy
¢
A A
0%} X1
A A
@3 X2
Ay §2 Ady  ¢P3 A3
= — — + €4
O4 G4 ¢ P4 @3
A _
ﬁ = ZTX + €5
os X
Afs _ Ads
(013 o5
Ap7 s Ads  ¢6 Ay
= — - — + €7
gl ¢1 ds P71 Py
ASF Ay
s? b7

(1.12)
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Numerical error

Note that division by 1 carries no error, and division by 2 carries no error either —
division or multiplication by any power of 2 will affect the exponent of the number, not
its mantissa.

Combining the expressions, and writing the intermediate variables in terms of x; and

X7 gives:
AS} 2x) 2x2
—s =€ €x; — €
2 T e en
(x1 4 x2)2 x3 (1.13)
-2 7€l 5 €2
(x1 —x2) (x1 —x2)
iy x% )cl2 + x% _ (x1 + x2)2

€3+ .
(x1 — x2)? : (x1 — x2)? ! (x1 — x2)? :

The collection of terms with a bracket beneath them is special, as will be explained.

Figure 1.1 Bauer graph for Sl2 with n = 2; Example 1.1.

Finally, before analyzing AS%, note that there is a convenient graphical method to ob-
tain the information embodied in (1.12). A “Bauer graph” [9] of algorithm 1 is given in
Figure 1.1. A circle is drawn for each input variable and for each elementary operation,
and lines are drawn to show how the data from one circle connects to the others. Asso-
ciated with each circle is a rounding error, and associated with each line of the graph
is the condition number of the elementary operation. The graph is “read” by tracing all
paths to the final result, multiplying each rounding error by the product of condition
numbers that follow it.
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1.3 Algorithms and error 9

The second algorithm may be written: n = 2 and 1 = x1+x2, X = n1/2, 72 = X1 —X,
n3 = 77%7 N4 =Xx2—X, 15 = 7)421 N6 = N4-+n5, S% = ¢¢/(n—1). To analyze this algorithm
we’ll use its Bauer graph (Figure 1.2).

X1—X Xp—X

€5

(x2—%)2
> (xi—x)2 T

(x1—%)2
T > (xi—x)2

€6

1
@ 0 (forn = 2)

Figure 1.2 Bauer graph for S% with n = 2; Example 1.1.

Analyzing the graph gives the same result that would be obtained if each differential
error expansion were written and combined:
AS3 2x 2x7

1 1
= — —€5. 1.14
522 €6 + - —.XQGXI p _x26x2 +er + 263 + €4+ 265 ( )

It is interesting to note that there is no dependence here at all on the relative error €.

A collection of terms has been identified with a bracket in (1.13) and in (1.14), and
these have the same bound. These bracketed errors are (1) the input errors €,, and €,,
propagated through to the result S?, and (2) one roundoff error associated with the last
step of the algorithm. This final error is included because, like (1.6), even an exact
calculation will be subject to rounding. Any mathematically identical algorithm for cal-
culating S? will contain these terms — they are completely unavoidable. They are called
inherent error, to distinguish them from the algorithm-dependent errors that make up
the remainder of (1.13) and (1.14).

We have, and will continue to assume in general, that |¢;| < € = 277 for all errors in
the calculation. But, in fact, input error €, may be considerably worse than € because of
experimental errors. The inherent error may be used to analyze how experimental error
affects the calculated solution.

© in this web service Cambridge University Press

www.cambridge.org



http://www.cambridge.org/9781107021082
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-1-107-02108-2 - Numerical Analysis for Engineers and Scientists
G. Miller

Excerpt

More information

10 Numerical error

Now, we compare the algorithm-dependent errors in (1.13) and (1.14). Algorithm 1
incurs large cancellation errors at the end of the algorithm: condition numbers (*) and
(**) of Figure 1.1 are guaranteed > 1 and < —1, respectively, because actual subtraction
occurs. No such large condition numbers appear in the algorithm-dependent part of the
error for algorithm 2. In algorithm 2 the final steps are numerically harmless, and the
amplification factors (f) and () of Figure 1.2 lie between O and 1. This results in a
numerically stable algorithm because the roundoff errors grow like |x; — x2|® while the
inherent errors grow like |x; — x2| . Algorithm 2 is more numerically trustworthy than
algorithm 1.

The lesson of this example is that when cancellation is unavoidable, do it as soon
as possible. If it is postponed, the large condition numbers amplify numerical errors
beyond those occurring in the inherent error.

To demonstrate the difference in these algorithms, the calculation is performed on the
following two columns of numbers. Both columns have the same variance.

dataset 1 data set 2

—0.329 10°—0.329
0.582 10°+0.582
—0.039  10° —0.039
—0.156  10° —0.156
—0.063 10° —0.063
0.552 10 +0.552
—0.927 10° —0.927
—0.540  10° — 0.540
0.460  10° 4 0.460
0.046  10° 4+ 0.046

set algorithm 1 algorithm 2

1 52 2.3655560000000003e-01 2.3655560000000003e-01
AS? 1.1733214354523381le-16 1.1733214354523381e-16

2 s? 2.3676215277777779%9e-01 8.7316799001074320e-04
AS?> 2.3655560001559353e-01 6.5919075558009081e-11

For the first set of data both algorithms compute the solution to approximately ma-
chine precision. With the second data set the differences are dramatic. The relative error
of algorithm 1 is &~ 107 times worse than the relative error of algorithm 2.

Example 1.2 Consider two algorithms for the same function

1 — cos(x)
y=———
by
sin?(x)
y2

~ x(1+cos(x))
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