
1 Introduction to waveform generation

Systematic generation of periodic signals with electronically controlled frequency,
phase, amplitude and waveform shape (or waveshape) is ubiquitous in nearly every
electronic system. The sinusoidal local oscillator in a super-heterodyne radio receiver is
a simple example of a signal source whose controllable frequency tunes the receiver.
Another example is a step input waveform (e.g. a square wave) that allows us to
measure the step response of a closed-loop control system (e.g. rise time, fall time,
overshoot and settling time) under controlled excitation conditions. A more complex
‘staircase’ input waveform allows us to measure step response at particular points over
the system’s dynamic range and is useful for investigating non-linear behaviour.

The progressive migration towards ‘software defined’1 systems across all application
domains is driving the development of high performance bespoke digital signal gener-
ation technology that is embeddable within a host system. This embedding can take the
form of a software code or a ‘programmable logic’ (e.g. FPGA) implementation
depending on speed, with both implementations satisfying the software definable
criterion. Today, applications as diverse as instrumentation, communications, radar,
electronic warfare, sonar and medical imaging systems require embedded, digitally
controlled signal sources, often with challenging performance and control requirements.
Furthermore, many of these applications now require signal sources that generate
non-sinusoidal waveforms that are specified according to a precisely defined waveshape
or spectrum function that is peculiar to the application. Moreover, in addition to
conventional frequency, phase and amplitude control, these signal sources can have
vastly increased utility by providing parametric and thereby dynamic control
of waveshape or corresponding spectrum. As we will see, there are several digital
waveform generation techniques that provide this functionality.

After reviewing introductory theoretical material and some established analogue
approaches, this book focuses on purely digital techniques for generating waveforms
with programmable frequency, phase, amplitude and most importantly waveshape.
The specification and dynamic control of waveshape (and hence the corresponding
spectrum) are relatively new topics in the published literature where hitherto
the emphasis has largely been on sine wave generation. We call such user-
programmable waveforms arbitrary waveforms. The utility of a waveform with an

1 We take ‘software defined’ to describe a system which is configurable through any locally stored digital data
(e.g. software program code, FPGA firmware or memory-based lookup tables).
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arbitrary waveshape or spectrum is apparent when we consider that the instantaneous
amplitude of that waveform can be engineered to control or emulate any parameter in a
digital or analogue system. Some typical examples include:

� set the physical position or velocity profile of a servo mechanism;

� set the operating point of any parametric control system (e.g. the current through a
laser diode or the temperature of an oven);

� emulate a parametric sensor output or other ‘real-world’ signal for test or diagnostic
debug purposes;

� modulate the instantaneous amplitude, frequency or phase of a carrier signal;

� provide an input forcing function to measure the time or frequency response of a
linear or non-linear system.

Nearly all of the arbitrary and sinusoidal waveform generation techniques presented
in this book are based on the established technique of fixed sample rate phase accumu-
lation frequency synthesis. Here a phase increment parameter controls output frequency,
and a lookup table ‘phase–amplitude mapping function’ generates the amplitude wave-
form. This powerful technique provides intrinsically linear and independent control of
frequency, phase and amplitude. It provides near instantaneous, phase-continuous
frequency transitions and almost unbounded frequency control resolution. With
advanced, innovative phase–amplitude mapping we can achieve dynamic control of
waveshape and hence corresponding spectrum in real time. An alternative approach
to controlling waveform frequency is outlined that is based upon a variable sample rate
approach, but only as an adjunct to fixed sample rate phase accumulation.

Generation of sine waveforms using phase accumulation and phase–amplitude map-
ping is well reported in the literature [1] where it is variously known as direct digital
synthesis (DDS), direct digital frequency synthesis (DDFS) or the numerically con-
trolled oscillator (NCO). In this book we adopt the DDS acronym. After reviewing
sinusoidal DDS as a special case of a general paradigm, we proceed to develop a
generalised DDS form that synthesises arbitrary waveforms (including sine waves)
according to a time or frequency domain specification. In this book, we denote this as
DDS arbitrary waveform generation or DDS AWG. For completeness, we include a
cursory review of recursive sinusoidal oscillators as they offer a computationally
efficient method for digitally generating sine waveforms, albeit with some performance
limitations that we compare across several algorithms. The underlying theory and
conceptual development of recursive oscillators also serves as an introduction to
sinusoidal DDS.

We endeavour to combine a general reference text and a designer’s guide that will
help appropriately skilled engineers to design bespoke digital waveform generator
implementations in technologies appropriate to their application. The reader is assumed
to have an undergraduate-level understanding of basic signal processing theory.
Waveform synthesis algorithms are presented as a signal-flow of arithmetic and
computational block descriptions deliberately abstracted from specific implementation
technologies (e.g. FPGA, ASIC or DSP code). Accordingly, it is assumed that design
professionals ‘skilled in the art’ can implement and optimise these descriptions in a
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hardware or software technology appropriate to their application. Established digital
hardware processing techniques that enhance throughput such as sample and block
level pipelining, parallel processing and time-division multiplexing are discussed in
the specific context of fast, high performance DDS AWG implementations. However,
design and optimisation guidance for FPGA, ASIC or DSP software implementation
is beyond the scope of this book.

To supplement the written material and to assist the reader in exploring ‘what
happens if’ design scenarios, we use Mathcad models to simulate the behaviour
of qualitative performance metrics with variation of key design and control parameters.
Mathcad models generate many of the graphical figures that are used throughout the
book to assist communication of key concepts and behaviours. We use Mathcad because
of its popularity, relatively low cost and the ease with which mathematical formulations
can be quickly scripted, simulated and visualised in a mathematically stylistic way.
These models are available for free download from a website that supports this book:
www.petesymons.com/dwg.

1.1 Preliminaries

We begin this section by outlining the chapter content of this book. We proceed to
discuss the definition of a waveform and use the sine waveform to explore and develop
the key elementary mathematical properties that underpin later discussion on generation
techniques. We clarify other descriptive terms associated with electronic waveforms,
such as signal and spectrum both in general and in the context of this book. Finally, we
briefly summarise the historical development of digital waveform generation to help set
the presented material in context.

1.1.1 Outline chapter content

Chapter 1 begins by discussing the definition, important properties and key parameters
of a waveform before proceeding to briefly review the historical development of digital
waveform generation. We present a taxonomical grouping of electronic waveform
generation techniques and discuss each of the three main subclasses concluding with
an outline of the state of the art in digital arbitrary waveform generation. To provide a
comparative backdrop to digital waveform generation, we review several established
analogue waveform generation methods and summarise their strengths and weaknesses.
Finally, we discuss some of the key application areas for bespoke standalone and
embedded digital arbitrary waveform generators.

Chapter 2 begins by presenting an outline of several important mathematical concepts
that underpin later material. We introduce the fundamental concept of tabulating a
sampled waveform in a lookup table – a concept which underpins the wavetable
(a term we borrow from computer music parlance) discussed further in Chapter 4.
We discuss the most important control parameters and their ideal properties, before
defining qualitative performance metrics that are pertinent to all of the techniques
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presented in the book. We use Mathcad models to quantify these metrics under various
design and control parameter conditions throughout this book.

In Chapter 3 we introduce the first digital waveform generation technique – the
recursive sine wave oscillator – and show how this leads to a generic recursive oscillator
description. We proceed to investigate several recursive oscillator structures each
having a unique attribute according to a particular performance metric. We discuss
implementation considerations common to all recursive oscillators and finally compare
their relative properties.

Chapter 4 introduces DDS sine wave generation, beginning with a discussion
of phase accumulating frequency synthesis. We investigate several sinusoidal
phase–amplitude mapping techniques using computer simulation of the qualitative
performance metrics introduced in Chapter 2 to compare their relative performance.
The wavetable is introduced together with the related concepts of phase truncation,
fractional addressing and interpolated wavetable lookup. Finally, some alternative
sinusoidal phase–amplitude mapping techniques are discussed.

Chapter 5 generalises the material introduced in Chapter 4 and investigates DDS
arbitrary waveform generation or DDS AWG. We consider methods for filling the
wavetable according to different waveform specification techniques, and a fundamental
aliasing error mechanism that arises when we ‘sample’ the wavetable by indexing it
with a phase accumulator. Phase truncation errors are exacerbated with multi-harmonic
waveforms typical of DDS AWG. One method for reducing the magnitude of these
errors is the use of phase interpolation according to a fractional phase representation.
We present an introductory interpolation tutorial before investigating several interpol-
ated phase–amplitude mapping algorithms with computer simulation of their qualitative
performance metrics that were introduced in Chapter 2. We discuss phase accumulating
frequency synthesis with ‘analogue waveshaping’ and DDS digital clock generation.
This chapter concludes with a discussion of some specific design considerations
peculiar to computer music and audio applications.

Chapter 6 explores several methods for dynamic ‘parameterised’ control of wave-
shape. We proceed to develop dynamically controlled harmonic and non-harmonic
waveform generation techniques; the latter enabling the generation of band-pass
spectra. One of the techniques investigated is equivalent to the inverse discrete Fourier
transform (IDFT), and allows real-time control of the synthesised signal’s harmonic
spectrum.

Chapter 7 develops the concept of phase domain processing that is introduced in
Chapter 4 to efficiently compute the inverse discrete Fourier transform (IDFT) as a
DDS phase–amplitude mapping algorithm. This allows the generation of periodic
waveforms with independently controllable harmonic amplitude and phase. Techniques
for generating waveforms based upon contiguous and non-contiguous (i.e. arbitrary)
harmonic series are introduced ahead of further development in Chapter 8.

Chapter 8 investigates design considerations for real-time hardware implementation
of the techniques presented in earlier chapters including arithmetic pipelining and
parallel processing. The chapter presents several design examples, including a novel
vector memory suitable for the implementation of phase and wavetable interpolation.
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The chapter concludes with some design examples of the contiguous and non-
contiguous IDFT waveform generators based upon phase domain processing that are
introduced in Chapter 7.

Chapter 9 investigates the design considerations surrounding digital to analogue
conversion, focusing on performance metrics and specifications that are peculiar to
digital waveform generation applications. We conclude by investigating the post-DAC
low-pass reconstruction filter and output signal conditioning.

1.1.2 Digital signal processing

The science of all electronic signal processing is primarily concerned with representa-
tion, analysis and generation of only two types of signal: analogue or continuous-time
signals and digital or discrete-time signals. From a mathematical perspective,
a continuous-time signal is one whose independent time variable is continuous
(i.e. ‘well-behaved’ and free from discontinuity). Conversely, a discrete-time signal is
one whose independent time variable is quantised (i.e. only defined in discrete, regularly
spaced steps called the sampling interval or sample period). Accordingly, the signal’s
instantaneous amplitude value is only defined at discrete instants of time. The discrete-
time signal therefore comprises a sequence of impulse functions whose amplitude
is equivalent to that of the underlying continuous-time signal at that time instant.
Elsewhere, from an analytical perspective, a discrete-time signal is zero-valued. In this
book we define a digital signal as a discrete-time signal that is also quantised
in amplitude according to a particular number representation (i.e. number of bits).
Similarly, digital control of a parameter implies that the parameter can be changed only
at discrete-time intervals. Digital generation of a signal therefore implies the discrete-
time execution of an algorithm at fixed sample intervals that processes amplitude
quantised internal data values and control parameters.

Historically, purely analogue signal generation techniques that operated in continu-
ous time were prevalent; but with the progressive advances in digital hardware, digital
techniques have become well established and now define the state of the art. The
emergence and development of digital signal processing (DSP)2 which we define as
the representation and processing of discrete-time, amplitude-quantised signals, has
revolutionised the field of electronic signal generation as well as many others. Today,
the availability of high speed DSP and related technologies (e.g. semiconductor
memory) combined with advanced design support software, enables the implementation
of bespoke, highly complex signal generation systems that are software defined.
Important examples of these ‘enabling technologies’ include:

2 There is a subtle, but important distinction between digital signal processing and digital signal processor,
both of which use the DSP acronym. The former relates to the analytical discipline of processing quantised
information in discrete-time, whereas the latter describes the hardware in which this processing takes place.
In this book, we use ‘DSP’ to represent both definitions and it is assumed the diligent reader will determine
context depending on the prevailing discussion.
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� software-programmable digital signal processors and microprocessors;

� ‘DSP optimised’ field-programmable gate arrays (FPGA);

� fast, high density semiconductor memory;

� analogue to digital convertors (ADC);

� digital to analogue convertors (DAC).

The ADC and DAC, whose development in performance and level of integration has
paralleled that of digital hardware, provide fundamental signal processing operations.
In the digital signal generation field which concerns us here, the DAC provides a crucial
operation in moving from the discrete- to continuous-time domain. We should remem-
ber that although signals may be generated using purely digital techniques, they are
often used or processed further in the analogue domain. In conjunction with a process
known as reconstruction filtering, the DAC allows us to move from the discrete-time,
amplitude-quantised (i.e. digital) domain to the continuous-time (i.e. analogue) domain.
This is clearly a fundamental (and occasionally overlooked) operation in digital signal
generation systems that are required to produce an analogue output with well-defined
performance characteristics. We may digitally synthesise a signal with noise and
distortion comparable with the amplitude quantisation level, only to find catastrophic
degradation when converted to an analogue signal by poor design or specification of the
DAC and its associated analogue signal processing.

1.1.3 Periodic and aperiodic waveforms

Electronic signals are often described as waveforms, describing the wave-like variation
of voltage with time that is observed when the signal is measured with an oscilloscope.
The measured voltage waveform may correspond to a ‘true’ voltage signal or some
other parameter (e.g. current or power) by a proxy measurement (e.g. a current
probe which produces an output voltage signal proportional to the current flowing
through the device). By definition, a waveform is the time domain view of an electronic
signal, where we are explicitly concerned with how the signal’s instantaneous amplitude
varies over time. We describe this variation as waveshape.

A typical waveform produced by an electronic signal generator may be defined as a
time-varying, periodic voltage whose waveshape function can be described (or approxi-
mated to some level of accuracy) by a mathematical function whose parameters control
frequency, phase, amplitude and waveshape. This function can take on many forms –
the sine function, an amplitude and phase weighted Fourier series or a piecewise-linear
function that specifies the waveform shape as a collection of linear segments over one
cycle of the waveform (e.g. a triangle or sawtooth wave).

In terms of its time domain behaviour, a waveform can be described as either periodic
or aperiodic. A periodic waveform repeats over time at a fixed interval called the
period and the number of waveform cycles observed in one second is called the
frequency. A waveform that is periodic over some time interval has an instantaneous
frequency defined on that time interval as the reciprocal of the period. Aperiodic
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waveforms do not exhibit this property and by definition show no cyclic or repetitive
behaviour over any time interval.

The mathematical condition for periodicity can be stated quite simply. If a signal
whose instantaneous amplitude is denoted by y(t) for all t, where t is the independent
time variable, then y(t) is periodic if

yðtÞ ¼ yðt þ τÞ for all t, ð1:1Þ
where τ is defined as the period of the signal.

To help illustrate these concepts, Figure 1.1 provides some examples of periodic and
aperiodic waveforms as plots of instantaneous amplitude y(t) against time t.

Figures 1.1a to e illustrate some classic periodic ‘function’ waveforms – the sine
wave, triangle wave, sawtooth wave, half-wave rectified sine wave and full-wave
rectified sine wave, respectively. Figure 1.1f illustrates a real-world example of a human
ECG waveform indicating normal cardiac function. This is essentially a periodic
waveform and a good example of a complex waveform that can be synthesised at a
given frequency (i.e. simulated heart rate) using the DDS AWG techniques to be
described. Using DDS AWG it is possible to conceive of a cardiac waveshape that
changes with frequency, perhaps to emulate a particular anomalous medical condition
for training or equipment verification purposes.

Figures 1.1g through 1.1l illustrate several aperiodic waveforms. Clearly, some of
these waveforms exhibit some underlying periodic behaviour, but do not satisfy the
periodicity criterion expressed in Eq. (1.1). Figure 1.1g shows an aperiodic waveform
composed of a sinusoid with occasional 180� phase inversions. If these phase inversions
are randomly distributed (as may apply if they correspond to binary data encoding) then
this type of waveform is aperiodic for all time. Figure 1.1h is a sinusoid with some
additive white noise. When integrated cycle by cycle over a sufficiently long period the
mean signal approaches a pure sinusoid and is therefore periodic, but the ‘cycle to
cycle’ waveform is strictly aperiodic due to the localised noise variance. Figure 1.1i
shows a periodic sinusoid, but with exponentially decaying amplitude typical of the
impulse response of an under-damped second-order system. These last three examples
illustrate that although a signal may be strictly aperiodic (in an analytical sense) it can
have underlying periodic behaviour – in these examples a sinusoid signal that is
modified by binary phase modulation, additive noise or an exponential amplitude
envelope.

Figure 1.1j shows a pure white noise signal which is aperiodic and has a random
amplitude distribution. Figure 1.1k shows an exponentially asymptotic curve with a
small additive signal comprising a sum of sinusoids with non-harmonic frequencies.
Figure 1.1l shows a waveform segment comprising the sum of four sinusoids with non-
harmonic frequencies. Such a waveform is strictly periodic with a period equal to the
least common multiple of the constituent sinusoid periods. However, as the composite
period can be extremely large when more than two sinusoids with rational frequencies
are added, we can say that such waveforms are ‘quasi-aperiodic’. We note at this point,
that some DDS AWG techniques (as discussed in Chapter 6, for example) are based on
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the weighted summation of sine waves with non-harmonic frequencies and can there-
fore easily generate such quasi-aperiodic waveforms.

From a waveform generator perspective, periodic waveforms exist for as long as the
generator is switched on and running. Truly aperiodic waveforms are by definition
non-repetitive and should strictly be considered as ‘single-shot’ signals initiated by
some trigger event and therefore existing for a predefined time. Aperiodic waveforms,
such as Figure 1.1i, become periodic if they are repeated over some interval.
Quasi-periodic waveforms are ‘locally periodic’ waveforms that are arranged to
exhibit infrequent transient anomalies that emulate some real-world signal behaviour
(e.g. a short-duration transient ‘spike’ or ‘drop out’). An example of a quasi-periodic
waveform is a sine wave where 1 in every 10 000 cycles exhibits the pre-defined
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Figure 1.1 Some simple examples of periodic and aperiodic waveforms.
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transient anomaly. Generation of such quasi-periodic waveforms is straightforward
using DDS AWG where we dynamically change the phase–amplitude mapping function
according to a waveshape control parameter.

1.1.4 Introducing the sine wave – properties and parameters

A fundamentally important periodic waveform is the sine wave. Many physical systems
that exhibit resonant or oscillatory behaviour do so with a nominally sinusoidal motion.
A classic example is the mass-spring oscillator, which oscillates with an exponentially
decaying sinusoid following an impulsive disturbance. In electronic instrumentation,
swept frequency sinusoids are used to measure the frequency and phase response of
linear systems. Similarly, high purity fixed frequency sinusoids are used to characterise
the distortion behaviour of quasi-linear electronic systems (e.g. amplifiers or analogue
to digital convertors). In these applications, spectral purity, frequency and amplitude
stability are essential attributes.

A sinusoidal oscillation whose instantaneous amplitude at time t we denote by y(t) is
defined by the cosine function, thus:

yðtÞ ¼ Acosð2π ft þ θÞ, ð1:2Þ
where A denotes the oscillation amplitude, f denotes the cyclic frequency in hertz3

(or the number of waveform cycles per second) and θ denotes the initial phase or phase
offset in radians relative to t ¼ 0. Applying the periodicity criterion expressed in
Eq. (1.1) to y(t), we obtain the expression A cos (2π ft þ θ) ¼ A cos (2π f (t þ τ) þ θ).
Since the angular period of a cosine (or sine) function is 2π radians, this equality holds
for all t if 2π fτ ¼ 2π or f ¼ 1/τ, thereby proving the reciprocal relationship between
sinusoid period and frequency.

The phase offset determines the time locations of the sinusoid maxima and minima
relative to t ¼ 0 and can be equated to a time shift applied to y(t). To see this, let y(t)
be delayed in time by one quarter of a period or τ/4. We then have y(t � τ/4) ¼
A cos(2π f (t � τ/4) þ θ ) ¼ Acos(2πft � π /2 þ θ ) since f ¼ 1/τ. This is equivalent to the
original sinusoid y(t) but with an additional phase offset of �π/2 radians. We
also observe that since the sine and cosine functions are periodic with angular period
2π radians, a phase offset of θ � 2kπ, where k is an integer, is indistinguishable from
a phase offset of θ. We therefore constrain the phase offset to the interval θ 2 [0, 2π)
radians.

Figure 1.2 illustrates the cosine waveform and its parameters. Phase offset is exempli-
fied by showing a second dashed sinusoid waveform having a phase offset of θ ¼ �π/2
radians relative to the cosine waveform.

The amplitude parameter A is a scaling factor which determines how large the cosine
waveform will be. Since the cosine function oscillates between þ1 and �1, y(t)

3 The standard unit of frequency is the hertz (equivalent to sec-1) and was formally established in 1930 by the
International Electrotechnical Commission (IEC) in honour of Heinrich Hertz for his pioneering work on
radio waves.
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oscillates between þA and �A. There are three amplitude measurements which concern
us here – peak amplitude A, peak-to-peak amplitude, App ¼ 2A and the RMS amplitude,
which is A=

ffiffiffi
2

p
for the cosine or sine waveform and used when calculating the electrical

power of a sinusoidal voltage waveform dissipated in a resistive load. The mean value
of the cosine or sine waveform taken over an integer number of cycles is precisely zero
(assuming zero DC offset).

The waveform crest factor is defined as the ratio of peak amplitude to RMS amplitude
and for the cosine or sine wave is

ffiffiffi
2

p
. A waveform’s crest factor is important when

attempting to measure its RMS amplitude, for example, with an electronic AC voltmeter.
Many RMS measuring AC voltmeters have an accuracy derating factor which is a
function of the signal crest factor being measured. Knowledge of the worst signal case
waveform crest factor is important when specifying the headroom relative to RMS before
the onset of clipping in both analogue and digital processing chains. In the context of
digital waveform generation, crest factor is important since the signal to noise ratio
(SNR) performance metric is defined relative to the RMS signal amplitude. Waveforms
with a high crest factor have a reduced RMS amplitude to avoid peak clipping with a
given amplitude dynamic range (i.e. number of DAC bits). Therefore, for a given noise
amplitude, high crest factor waveforms have lower SNR.

These amplitude measurements are not just peculiar to sinusoids, they are applicable
to all periodic waveforms and it is instructive to outline their interrelationship for
other simple periodic waveforms. Figure 1.3 tabulates the mean and RMS amplitudes
and crest factors of several simple waveforms as a function of normalised peak amplitude.

1.1.5 Instantaneous phase and frequency

The argument of the cosine function in Eq. (1.2) is called the instantaneous phase ϕ(t),
and for a constant frequency sinusoid is given by:

Figure 1.2 A sinusoidal waveform and its parameters.
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