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Localized and itinerant electrons in solids

The main topic of this book is the physics of solids containing transition elements: 3d – Ti,
V, Cr, Mn, . . . ; 4d – Nb, Ru, . . . ; 5d – Ta, Ir, Pt, . . . These materials show extremely diverse
properties. There are among them metals and insulators; some show metal–insulator tran-
sitions, sometimes with a jump of conductivity by many orders of magnitude. Many of
these materials are magnetic: practically all strong magnets belong to this class (or contain
rare earth ions, the physics of which is in many respects similar to that of transition metal
compounds). And last but not least, superconductors with the highest critical tempera-
ture also belong to this group (high-Tc cuprates, with Tc reaching ∼ 150 K, or the recently
discovered iron-based (e.g., FeAs-type) superconductors with critical temperature reaching
50–60 K).

The main factor determining the diversity of behavior of these materials is the fact
that their electrons may have two conceptually quite different states: they may be either
localized at corresponding ions or delocalized, itinerant, similar to those in simple metals
such as Na (and, of course, their state may be something in between). When dealing with
localized electrons, we have to use all the notions of atomic physics, and for itinerant
electrons the conventional band theory may be a good starting point.

This division in fact goes back to the first half of the 20th century. In the early stages of
the development of quantum mechanics one used to treat in detail the electrons in atoms,
with different aspects of atomic structure, shell model, atomic quantum numbers, etc. All
these details are indeed important for transition metal compounds as well, and we will
discuss these problems in the main body of the book. However at the beginning, in this
introductory chapter, we will treat the simplest case, ignoring these complications and
paying most attention to the competition between localized and itinerant states of electrons
in solids.

1.1 Itinerant electrons, band theory

The “fate” of atomic electrons when individual atoms form a concentrated system – a
solid – was treated in the first half of the last century, and it led to a very successful picture
known as band theory; see, for example, Mott and Jones (1958), Ashcroft and Mermin
(1976), Kittel (2004a), and many other textbooks on solid-state physics. In this theory
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2 Localized and itinerant electrons in solids
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Figure 1.1 Schematic form of the energy spectrum ε(k) and the density of states ρ(ε) of free
electrons in a crystal.

one considers the motion of noninteracting electrons on the background of a periodic
lattice of ions. The spectrum of an electron in the periodic potential consists of allowed
energy bands with forbidden states – energy gaps – between them; see the schematic pic-
ture of Fig. 1.1, where we show the energy bands εi (k) and the corresponding density of
states ρ(ε).

If there are N atoms in a crystal, each band contains N k-points; for example in the
one-dimensional case kn = 2πn/N , n = − 1

2 N , . . . ,+ 1
2 N , so that in the continuous limit

−π � k < π (here and below in most cases we will take the lattice constant a = 1). The
values −π � k � π form the (first) Brillouin zone. For a system with N sites each band
contains N energy levels and, according to the Pauli principle, one can put two electrons
with spins ↑ and ↓ on each level, so that each band has room for 2N electrons.

In this scheme the electrons occupy the lowest energy levels, and if the number of elec-
trons Nel is less than 2N , that is the electron density n = Nel/N < 2, the electrons would
occupy the lowest energy band only partially, up to a certain maximal momentum kF and
energy εF (Fig. 1.2) and the system would be a metal. kF and εF are correspondingly the
Fermi momentum and Fermi energy.

In the one-dimensional (1d) case we would have two Fermi points ±kF. In two-
dimensional (2d) and three-dimensional (3d) systems the electrons occupy the states
ε(k) � εF, and the boundary of these occupied states forms the Fermi surface. There
may exist several energy bands, which may intersect, and the corresponding Fermi surface
of metals may in general be very complicated.

If, in the simplest case of one nondegenerate band of Fig. 1.1, we had Nel = 2N , the
electrons would fully occupy this first band and the system would be insulating, with
an energy gap separating the completely full valence band and the empty conduction

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02017-7 - Transition Metal Compounds
Daniel I . Khomskii
Excerpt
More information

http://www.cambridge.org/9781107020177
http://www.cambridge.org
http://www.cambridge.org


1.1 Itinerant electrons, band theory 3
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Figure 1.2 Energy spectrum of a metal: the occupied states are shaded. εF and kF are the Fermi
energy and Fermi momentum.
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Figure 1.3 Typical energy spectrum of a semiconductor. The occupied states are shaded.

band (Fig. 1.3). This is the standard description of the ordinary band insulators or
semiconductors such as Ge and Si.

There are two methods of describing band formation in solids, usually presented at
the very beginning of textbooks on solid-state physics, see for example Ashcroft and
Mermin (1976) and Kittel (2004a). The first method treats the motion of independent,
noninteracting electrons in a periodic lattice potential (Fig. 1.4). One can start from free
electrons with the spectrum ε(k) = k2/2m in a periodic potential. The corresponding
Schrödinger equation for the electron is known in mathematics as the Mathieu equation,
and its spectrum, shown in Fig. 1.5, has the form of energy bands separated by energy
gaps at wave vectors equal to the Umklapp wave vectors of the given periodic lattice,
K = 2πn/a, where a is the corresponding lattice parameter. For a weak periodic potential
we have the picture shown in Fig. 1.5 which, after we fold the spectrum to the first Bril-
louin zone, would give the spectrum shown schematically in Figs 1.1 and 1.3. This is the
so-called free electron approximation. Of course, in contrast to the simple 1d case shown
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4 Localized and itinerant electrons in solids

Figure 1.4 Periodic potential for treating the motion of electrons in the band theory.
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Figure 1.5 The origin of energy bands for free electrons in a periodic potential.

in Figs 1.4 and 1.5, in real crystals with complicated crystal structures the band structure
may look much more complicated, with some bands possibly crossing in some directions,
but the general rule remains the same: if we have an odd number of electrons per ion, or per
unit cell, then in this approximation some bands will necessarily be partially filled and the
system should be a metal; and if there is an even number of electrons per unit cell, we may
have an insulator of the type shown in Fig. 1.3 (though in the case of overlapping bands
we may still obtain a metal or semimetal).

Another approximation often used in band theory is the tight-binding approximation;
this picture is usually closer to reality for d-electrons in transition metal compounds, and
we will mostly use this approximation in what follows. This approach starts by considering
isolated atoms with their localized atomic levels, and then treats the tunneling or hopping
of electrons from one atom to another, that is from one potential well to the next in the
crystal (Fig. 1.6). For two neighboring potential wells this leads to a splitting of energy
levels (dashed lines in Fig. 1.6(a)) into bonding and antibonding configurations, |b〉 =
1√
2
(|1〉 + |2〉) and |a〉 = 1√

2
(|1〉 − |2〉), and in a periodic lattice composed of such centers

each atomic level is broadened into a band, Fig. 1.6(b), with the states in the form of a
plane wave with momentum k,

|k〉 = 1√
N

∑
ei k·n|n〉 , (1.1)

where |k〉 is the plane wave wavefunction and |n〉 is the atomic state at site n. As a result
we have again a band picture as shown in Fig. 1.1, with each band originating from the
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1.2 Hubbard model and Mott insulators 5
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Figure 1.6 The origin of energy bands in the tight-binding approximation.
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Figure 1.7 Typical dependence of the energy bands on interatomic distance a.

corresponding atomic level (again, these bands can in principle overlap; see the famous
picture of Fig. 1.7, showing schematically the broadening of atomic levels into bands
when the atoms are moved closer together, i.e. the interatomic distance a is reduced). For
large interatomic distances, that is for small overlap of the corresponding wavefunctions
of neighboring atoms and hence for small probability of tunneling between neighboring
potential wells of Fig. 1.6, the bands will be narrow and one can treat each such band sep-
arately, ignoring the others. This is the approximation often used to describe the crossover
from the band picture with itinerant electrons to the picture with localized electrons.

1.2 Hubbard model and Mott insulators

Consider the simplest idealized case of a lattice consisting of atoms with nondegenerate
electron levels – for example, one can visualize it as a lattice of hydrogen atoms or protons
separated by distance a (taken as 1) with one nondegenerate 1s level at each site (the
dashed line in the potential wells of Fig. 1.6). The hopping of electrons from site to site,

H = −t
∑

〈i j〉,σ
c†

iσ cjσ , (1.2)

where c†
iσ , ciσ are creation and annihilation operators of electrons at site i with spin σ ,

t is the hopping matrix element, and the summation 〈i j〉 goes over nearest neighbors,
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6 Localized and itinerant electrons in solids
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Figure 1.8 Nondegenerate band for noninteracting electrons in the tight-binding approximation for
one electron per site, n = Nel/N = 1.

leads to the formation of an energy band. (We use here and below the formalism and
language of second quantization, which is widely used nowadays; a simple introduction to
this technique is presented in Appendix B.) The Fourier transform of (1.2) gives for this
band the Hamiltonian

Hb =
∑
k,σ

ε(k) c†
kσ ckσ (1.3)

with the spectrum (with one, two, or three terms for the simple chain, square, or cubic
lattice)

ε(k) = −2t(cos kx + cos ky + cos kz) , (1.4)

see Fig. 1.8 (we again set the lattice constant a = 1). This is the standard tight-binding
approximation. As discussed above, for a lattice of N sites there will be N energy levels in
this band, which for N (or volume V ) going to infinity gives the continuous spectrum (1.4).
According to the Pauli principle there will be 2N places for electrons in this band. Thus,
if there is one electron per site, with electron density n = Nel/N = 1, the band will be
half-filled, as shown in Fig. 1.8, and the system should be a metal.

Note that this conclusion does not depend on the distance between atoms in Fig. 1.6,
that is on the value of the hopping matrix element t in (1.2), (1.4), which determines the
total bandwidth W = 2zt (where z is the number of nearest neighbors – e.g., z = 2 in 1d
chain, z = 4 in square lattice, etc.). However this hopping t , which actually is proportional
to the probability of electron tunneling from site to site, will be exponentially small when
we increase the distance between sites. Nevertheless, according to (1.3), (1.4) and Fig. 1.8,
such systems should still be metallic for any distance between sites and for arbitrarily small
values of t . Thus, for example, we can put our “hydrogen atoms” one meter apart and still
formally the system should be metallic!

Of course that is a very unphysical result. Intuitively it is evident that in this case the
system would consist of neutral hydrogen atoms, with exactly one electron localized at
each site, and it would be insulating. What is wrong then, what is missing in the treatment
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1.2 Hubbard model and Mott insulators 7
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Figure 1.9 Creation of charge-carrying excitations (holes and extra electrons, or doublons) from the
state with electrons localized one per site.

which led to the conclusion of Fig. 1.8 that such systems would be metallic for arbitrarily
small hopping t and bandwidth W ∼ t ? At least one very important physical effect was
missing in this treatment and in the corresponding one-electron Hamiltonian (1.2): it com-
pletely ignored the interaction, the Coulomb repulsion between the electrons. Physically
we expect that if the distance between atoms is large enough, there will be exactly one elec-
tron localized at each site, and because of the repulsion with the first electron, the second
electron would not go to the already occupied site.

Let us start from such a state, with one electron per site – see Fig. 1.9(a). To create
charge-carrying excitations we should take one electron from a certain site, say site i , and
transfer it to another site j – see Fig. 1.9(b). Then the hole left at site i and the extra
electron at site j (a doubly occupied site or “doublon”) can start to move across the crystal,
contributing to the electric current (nobody has told us that the hole should remain at site i ;
an electron from a neighboring site i + 1 can hop to site i , i.e. the hole would move to
site i + 1, without any energy cost; the same is true for an extra electron or doublon).

However, to create such charge-carrying excitations, a hole and a doublon, we first had
to move electrons and put an extra electron at site j , which already had an electron! And
this would cost us at least the energy of Coulomb repulsion of two electrons at site j .
This energy is traditionally denoted U , and the corresponding term in the Hamiltonian
describing this interaction has the form

Hint = U
∑

i

ni↑ni↓ (1.5)

(for the nondegenerate case, such as our “1s” level, one can put only two electrons with
opposite spins at each site, and that is why the interaction (1.5) contains the electron densi-
ties at each site i , niσ = c†

iσ ciσ , with opposite spins). The resulting full model would then
be (combining (1.2) and (1.5))

H = −t
∑

〈i j〉,σ
c†

iσ cjσ + U
∑

i

ni↑ni↓ ; (1.6)

this is known as the Hubbard model (Hubbard, 1963).
It is clear that when we include this physical effect, the on-site electron repulsion (1.5) to

create such an electron–hole (or doublon–hole) pair would cost us energy U . What we can
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8 Localized and itinerant electrons in solids

gain here is the kinetic energy of both electron and hole: when they start to move through
the crystal, they would form energy bands (1.3), (1.4) and both would occupy the lowest
states in these bands, with energy − 1

2 W = −zt . That is, the total energy gain obtained
by creating such excitations would be W = 2zt , but the energy loss would be U – the
on-site electron repulsion. Qualitatively, we expect that if U > W then the electrons would
remain at their sites and the system would remain insulating. To create electron and hole
excitations which would then be able to carry currents, we need to overcome the energy gap

Eg ∼ U − W = U − 2zt , (1.7)

which plays the same role as the energy gap between the filled valence band and the empty
conduction band in ordinary insulators or semiconductors such as Ge or Si (see Fig. 1.3).

Thus for one electron per site, n = 1, and for small electron hopping t (or for a nar-
row band W ) the inclusion of the on-site Coulomb repulsion Uni↑ni↓ (1.5) can make
the system insulating if U ∼> W = 2zt , despite the fact that this system would have
been metallic in the conventional band picture, which is a one-electron picture and ignores
electron–electron interactions. Such insulators are called Mott or Mott–Hubbard insulators
(see, e.g., Mott, 1990).1 The nature of this insulating state is quite different from that of
ordinary band insulators; it is caused not by the periodic potential of the lattice, as is the
case for band insulators, but is due completely to electron–electron interaction or, as this is
frequently called, strong electron correlations. Correspondingly, most of the properties of
Mott insulators are also very different from those of ordinary insulators, although some of
the notions from ordinary insulators (such as energy gaps) can also be used in the descrip-
tion of Mott insulators. Often this analogy is helpful, but one has to be careful in using
it and in transferring the notions of band insulators to Mott insulators. We will see many
examples of differences between these two types of insulators later on.

The connection with the theory of chemical bonding in molecules should be mentioned
here. The simplest description of the formation of a chemical bond, for example in the H2

molecule, uses the so-called molecular orbital (MO) description: the wavefunction of an
electron moving between sites (protons) a and b is written as

|�±〉 = 1√
2

(�a ±�b), (1.8)

where the + and − signs refer to bonding and antibonding orbitals. The ground state of the
H2 molecule with two electrons on bonding orbitals (with antiparallel spins) will then be
described by the state

|�MO〉 = 1
2

(
�a(r1) +�b(r1)

)(
�a(r2) +�b(r2)

) · 1√
2

(1↑ 2↓ − 1↓ 2↑) (1.9)

(a singlet state, symmetric in coordinates and antisymmetric in spins). This state is called
an MO state, often also an MO LCAO state (molecular orbital – linear combination of
atomic orbitals), or Hund–Mulliken state. One sees that in expression (1.9) there are terms
corresponding to electrons located at different sites (�a(r1)�b(r2)) – these are nonpolar

1 Some interesting historical notes connected with the origin of the notion of Mott insulators are presented in
Appendix A.
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1.2 Hubbard model and Mott insulators 9

or homopolar states. However the MO state also contains, with equal probability, the ionic
states of type �a(r1)�a(r2) in which both electrons reside on the same atom a. When
extended to a large periodic crystal, such MO states give rise to the standard band picture
of noninteracting electrons (1.3), (1.4).

It is, however, clear that the ionic states such as �a(r1)�a(r2) cost a large Coulomb
on-site energy of electron–electron repulsion. To avoid this cost, one often describes the
chemical bond using another state, known as the Heitler–London state:

|�HL〉 = 1√
2

(
�a(r1)↑�b(r2)↓ −�a(r1)↓�b(r2)↑

)
. (1.10)

In this state all ionic configurations with two electrons at the same site are excluded, and the
corresponding energy loss is avoided.2 On the energy diagram the MO state corresponds to
two electrons occupying a bonding orbital with energy −t , see Fig. 1.10(a). The Heitler–
London state can also be shown on a similar diagram, see Fig. 1.10(b), but one has to
remember that the basic states in this case are not the single-electron states of noninteract-
ing electrons but rather many-electron (here two-electron) states, with the electron–electron
interaction taken into account. As a result, the energy of such a Heitler–London bonding
state is not −t as was the case for the MO state, but rather ∼ −t 2/U , see below, where
U is the on-site Hubbard repulsion (1.5). Once again, these are many-electron states, the
lower one corresponding to a singlet state and the upper one to a triplet state of our two
sites–two electrons problem. In fact, these two approaches are the main ones used in the

a

t

b a b

−

t+

t2  U−

t2  U+

(a)

bonding state

singlet

triplet
antibonding state

(b)

Figure 1.10 (a) Creation of bonding and antibonding states for two centers in the MO LCAO
approximation. (b) Creation of singlet bonding and triplet antibonding states in the Heitler–London
approximation.

2 In the second quantization formalism, the wavefunctions (1.9) and (1.10), written using the electron creation
and annihilation operators c†, c used for example in eq. (1.6) have the form

|�MO〉 = 1
2 (c†

1↑ + c†
2↑)(c†

1↓ + c†
2↓)|0〉 ,

|�HL〉 = 1√
2

(c†
1↑c†

2↓ − c†
1↓c†

2↑)|0〉 ,

where |0〉 is the vacuum state without any electrons. The required antisymmetry of the total wavefunction is

guaranteed by the anticommutativity of the fermion operators ci , c j on different sites i , j : c†
iσ c†

jσ ′ = −c†
jσ ′c

†
iσ .
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10 Localized and itinerant electrons in solids
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Figure 1.11 Schematic form of the energy band in the Hubbard model as a function of the strength
of electron–electron (Hubbard) repulsion. The two bands on the right are the lower (shaded) and the
upper (unshaded) Hubbard (sub)bands.

description of chemical bonds in molecules, for example in the hydrogen molecule H2 (see,
e.g., Slater, 1963).

We see that the MO or MO LCAO description of the chemical bond corresponds to the
band picture of concentrated solids, while the Heitler–London description corresponds to
Mott or Mott–Hubbard insulators, where the electrons avoid each other and are localized
at different sites, one per site.

The picture often used to describe Mott insulators, constructed by analogy with band
insulators, is that of Hubbard subbands (Fig. 1.11). We can say that the energy band, which
for noninteracting electrons (U = 0) would be half-filled, for large enough U , (U/t) >
(U/t)crit (or U > Ucrit ∼ W = 2zt), would split into two subbands, with the energy gap
between them being Eg ∼ U (or, more accurately, Eg ∼ U − W = U − 2zt). For one
electron per site, n = Nel/N = 1, each of these subbands will then have “space” for N
electrons. The lower band will then be occupied, and the upper one empty. These bands
are called lower and upper Hubbard (sub)bands. This picture resembles that of ordinary
semiconductors, see Fig. 1.3.

However, there is an important difference here. If for band insulators or semiconductors
the energy gap was determined by the periodic potential of the crystal lattice, here it is
entirely due to electron–electron interactions. Also, each band in Fig. 1.3 contained 2N
places. In Mott insulators, however, the band for U = 0 contains 2N places, but when the
band is split into two Hubbard subbands for large U (Fig. 1.11), each of these subbands
(for one electron per site) would contain only N places; it is precisely because of this that
the system with one electron per site, n = Nel/N = 1, would completely occupy the lower
Hubbard band, leaving the upper one empty.
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