Index

Adams, R. D. 242
Ade-Hall, J. H. (formerly Hall) 102, 215–16, 234, 254–5, 315, 319
Adie, R. J. 88–9
aerial photography, use by Canadian Geological Survey 3–4
Africa
fit with South America 170–86
ocean ridges around 46, 60
African block
movement relative to the Antarctic block 492–3
movement relative to the South American block 486–90
Alaska 274–5
Aleutians 549–51
Allan, T. D. 69, 90, 171, 241
eyearly life and career 80–4
magnetic anomalies and seamounts 78–9
work on Atlantic magnetic anomalies 80–4
work on Red Sea magnetic anomalies 82–4
Allen, C. R. 164, 165
Allsopp, H. L. 353, 355–7
Alpine Fault, New Zealand 30, 44, 595
American Miscellaneous Society (AMSOC) 214
Anderson, D. L. 413, 414, 453, 454, 458, 461–2
Anderson, O. 479, 481, 502
Anderson, Orson 561, 562
Antarctic block
movement relative to the African block 492–3
movement relative to the Pacific block 490–1
Antarctica
implications of seafloor spreading 41–2
Matthews time in 85–7
oceanic ridges surrounding 41–2, 46, 57, 60, 275–7, 302–3
Appalachians 13–15
apparent polar wander (APW) paths 27–9, 186–7, 604–12
Arabian Sea, transform faults 272
Archambeau 454
Argand, E. 20, 25, 28, 40, 49, 177, 181, 611
Arkell, W. J. 87–8
astatic magnetometer (Cambridge) 91
asthenosphere 568
atolls in the Pacific 50–1
Atwater, T. 504, 507, 509, 576–84, 586, 592–3, 598–9
Australian National University (ANU) 144, 227, 228, 234
improvements to the reversals timescale 351, 353–9
Backus, G. E. 461–2, 484, 510, 515
analysis of marine magnetic anomalies 205–8, 210
anisotropy in the upper mantle 213–14
application of Euler’s Point Theorem 205–8
education and early career 202–4
response to Everett’s continental fit 204–5
response to the Vine–Matthew hypothesis 204–9
Bailey, E. B. 45, 49
baked contact test 318–19
Baker, R. C. 242–3
Balsley, J. R. 128
Barazangi, M. 551, 563–4, 578
Baron, J. G. 310–16
basaltic nature of ocean rocks 89–90
Bath, J. 324–5
Beartooth Mountains, Montana 3
Beaumont, J. 139
Bershć, J. 91, 93–4, 101, 172, 260
Benioff, H. 160, 274, 275, 444, 552 see also Wadati–Benioff zone
Berntal, J. D. 35–6, 37, 39, 57, 58, 168
Bernard Price Institute of Geophysical Research, Johannesburg 355
Betz, F. 153–4
Bickle, M. J. 468
Bidgood, D. E. T. 93, 175, 185
Birch, F. 21, 458, 461–2
Bishop Tuff 352, 358
Index

Black, B. 458–9
Black, M. 93–4
Blackett, P. M. S. 42, 72, 96, 163, 190, 219, 319, 460
Blanco Fracture Zone 297, 579
Blundell, D. J. 87
Bodvarsson, G. 239–40, 274, 284–5, 313–15
Bollinger, G. A. 393–4, 402–3, 575
Bolt, B. A. 389
Bonne, J. 526
Bosco triple junction 524
Bott, M. H. P. 168, 319–20, 322–3
Boucot, J. 413
Bower, M. E. 242–3
Bowin, C. O. 244–5, 478
 Brace, W. 393
Brant, A. 125, 126
Briden, J. C. 413, 416, 608–10
Britain, deep seismic profiling of the continental crust (BIRPS) 87
British Antarctic Survey 88
Brock, A. 142
Broeker, W. 361
Brown, J. (football coach) 438
Browne, B. 98
Bruckshaw, J. McG. 80, 107
Brune, J. N. 449
Brune epoch (Chron) 345–50
Brunhes–Matuyama boundary 352–3, 354–7
Brunhes normal series (deep-sea cores) 362–3
Bucher, W. H. 439–40
Buddington, A. F. 128, 279–80
continental fit results presented in 1964 170–86
continental nuclei (Wilson) 15–18
continental reconstructions (Royal Society, 1964) 163–4, 166–7
continental fit
Bullard, Everett, and Smith 178–85, 260–1
difficulty of Central America 185–6
significance of (Hess) 260–1
see also Carey
Canada, support for the Vine–Matthews hypothesis 242–3
Canadian Geological Survey 3–4
Canadian Shield 6, 15–19, 30, 39
basalts 135
radiometric dating 15–16
tectonics 42–6
Cann, J. R. 77, 97, 110, 111, 112, 113, 124, 279–80, 325
work with Vine and Matthews 236, 237–9
Cape Verde Islands, marine magnetic anomalies 71
Carey, S. W. 28, 33, 49, 70, 93, 155, 170, 241, 259, 269, 329, 570
continental fit 178–81, 185, 206–7, 260–1
fit of Africa and South America 170–1
rapid Earth expansion 224, 227, 228, 230, 231
Carlsberg Ridge 262
computer modeling by Vine 114–24
Matthews’ magnetic survey (1962) 62, 64, 65, 91
transform fault associated with 272
Chamalaun, F. H. 353–7, 358, 378
Chander, R. 449
Chandrasekhar, S. 202–4, 220, 221
Chase, C. G. 507–9
Chase, T. E. 194–5
Chile region 549–51
Christoffel, D. A. 241–2, 380
Clegg, J. A. 28–9, 31–2, 42, 460, 608
Coats 570
Cockroft, J. 3
Collet, L. 49
Collins, W. H. 3
crater modeling
Carlsberg Ridge survey data (Vine) 114–24
interpretation of marine magnetic anomalies 104–5, 107–8
marine magnetic anomalies 64–5, 80–1
Parker’s map-projecting program 514
computers, Vine’s use of 98–100
continental accretion, Wilson’s defense of 5–18
Continental Drift (Runcorn ed. 1962) 106
continental drift
attacks by Wilson 18–20
debate about the mechanism 58–61
implications of transform faults 267–8, 278
mechanism difficulty 192–3
Scheidegger’s attack on 20–1
see also Goddard conference; Royal Society symposium on continental drift (1964)
continental fit
Bullard, Everett, and Smith 178–85, 260–1
difficulty of Central America 185–6
significance of (Hess) 260–1
see also Carey
continental nuclei (Wilson) 15–18
continental reconstructions (Royal Society, 1964) 163–4, 166–7
Canada, support for the Vine–Matthews hypothesis 242–3
Canadian Geological Survey 3–4
Canadian Shield 6, 15–19, 30, 39
basalts 135
radiometric dating 15–16
tectonics 42–6
Cann, J. R. 77, 97, 110, 111, 112, 113, 124, 279–80, 325
work with Vine and Matthews 236, 237–9
Cape Verde Islands, marine magnetic anomalies 71
Carey, S. W. 28, 33, 49, 70, 93, 155, 170, 241, 259, 269, 329, 570
continental fit 178–81, 185, 206–7, 260–1
fit of Africa and South America 170–1
rapid Earth expansion 224, 227, 228, 230, 231
Carlsberg Ridge 262
computer modeling by Vine 114–24
Matthews’ magnetic survey (1962) 62, 64, 65, 91
transform fault associated with 272
Chamalaun, F. H. 353–7, 358, 378
Chander, R. 449
Chandrasekhar, S. 202–4, 220, 221
Chase, C. G. 507–9
Chase, T. E. 194–5
Chile region 549–51
Christoffel, D. A. 241–2, 380
Clegg, J. A. 28–9, 31–2, 42, 460, 608
Coats 570
Cockroft, J. 3
Collet, L. 49
Collins, W. H. 3
crater modeling
Carlsberg Ridge survey data (Vine) 114–24
interpretation of marine magnetic anomalies 104–5, 107–8
marine magnetic anomalies 64–5, 80–1
Parker’s map-projecting program 514
computers, Vine’s use of 98–100
continental accretion, Wilson’s defense of 5–18
Continental Drift (Runcorn ed. 1962) 106
continental drift
attacks by Wilson 18–20
debate about the mechanism 58–61
implications of transform faults 267–8, 278
mechanism difficulty 192–3
Scheidegger’s attack on 20–1
see also Goddard conference; Royal Society symposium on continental drift (1964)
continental fit
Bullard, Everett, and Smith 178–85, 260–1
difficulty of Central America 185–6
significance of (Hess) 260–1
see also Carey
continental nuclei (Wilson) 15–18
continental reconstructions (Royal Society, 1964) 163–4, 166–7

© in this web service Cambridge University Press

www.cambridge.org
continental shelves, formation and transformation
(Wilson) 11, 18
continents
development of (Wilson) 42–3
implications of seafloor spreading 41
mid-Mesozoic reconstruction (Wilson) 161
continuous seafloor spreading, evidence for 560
contractionism
limitations 43–4
rejection by Wilson (1960) 33–5
Wilson’s continued support for (1959) 21–31
Wilson’s defense of 5–18
Coode, A. M. 258
challenging Wilson’s ideas on faults 281–2
differences from Wilson’s account 288–9
early life 280
education and career 280–1
idea of transform faults 280
mention of transform fault idea to Wilson 262, 263, 264
on mantle convection 287–8
paper on types of oceanic faults 284–9
publication of his paper 283–4
role as catalyst for Wilson 290–1
Cook, A. 512–13
Cook, K. L. 336
Cordillera mountain range 12, 15
Coriolis force, effect on mantle convection 220–3
Cowling, T. G. 202, 203
Cox, A., 56, 96, 102, 106–7, 123–4, 214, 234, 235, 298, 334, 357, 358, 402, 413, 416, 422, 605
becomes a mobilist 374–5
improvements in the reversals timescale 345–50, 351–3
reaction to Eltanin-19 magnetic profile 374–5
Cox, J. 133–4
Creer, K. M. 29, 42, 79–80, 91, 163–4, 175, 281, 319, 460, 461, 604
Cretaceous Magnetic Quiet Zone 335
Cretaceous Normal Superchron 335
Crowe, J. 411, 468
crustal blocks/plates
evolution and past rotations 524–6
Hess 260
Morgan identifies block boundaries 485
Morgan’s 1968 paper 485–94
rigidity of 485, 493, 517
structure of 494
three types of block boundaries 485
see also plate tectonics
Curie point 62, 68, 69, 71, 133, 135, 239
Curie point isotherm (Heirtzler and Le Pichon) 251–2
Dalrymple, G. B. 234, 357, 358, 413, 416
improvements in the reversals timescale 345–50, 351–3
Daly, R. A. 155, 454, 455, 485
Dana, J. W. 6
Darwin Rise 50, 54, 56, 198, 260, 275, 301–2, 333–4
dating
paleontological evidence 224–6
radiometric dating 15–16
radiometrically dated reversal timescale 298, 351
relation between days in the year and geological
time 224–6
ridge crest basalts 343–4
use of fossil corals 224–6, 230–1
Davies, D. 168, 462, 463
Davis, P. 570
Day, A. 144
days in the year
change over geologic time 230–1
measuring over geologic time 224–6
de Almeida, F. M. 184
De Geer Fault 269–71
De Geer line 31
De Sitter, L. U. 168
Dead Sea rift 272
Deccan Traps 608
deep-focus earthquakes
explanations for 35–6
Fiji–Tonga region 445–56
Isacks and Oliver’s study 443–6
deep-sea cores
paleomagnetic analysis of the Lamont collection
359–63
reversal timescale based on 359–63
Deer, W. A. 93–4
Department of Geodesy and Geophysics,
Cambridge 79, 80, 87–8, 89–91, 96–101, 277, 406, 461
descending seismic zone length and slip rate 575
Deutsch, E. R. 28–9, 31–2
Dewey, John 413, 417
Dicke, R. W. 33, 474
Dickson, G. O. 63, 143–4, 363, 366–7
Dietz, R. S. 59, 134, 136, 153, 154, 241, 405, 416, 454
discussion of seafloor spreading with Bernal
35–6
Heezen’s attack on seafloor spreading 56–8
Menard’s attack on seafloor spreading 200–2
seafloor spreading 37, 39, 41, 53, 96, 106, 119, 131–2, 143, 155, 217, 218
Dill, R. F. 54
Dirac, P. A. M. 33, 227, 457
Doell, R. R. 56, 96, 102, 106–7, 123–4, 214, 234, 235, 298, 334, 357, 358, 413, 416, 422, 605
becomes a mobilist 375
improvements in the reversal timescale 345–50, 351–3
reaction to Eltanin-19 magnetic profile 375
dolerites 20, 29
Earth expansion see expansionist view; rapid Earth expansion theories; slow Earth expansion
Earth’s rate of rotation change over time 230–1
evidence for slowing 224–6
earthquake seismology and global tectonics 562–75
earthquakes
deep earthquake mechanisms 539–52
epicenter distribution mapping 563–4
first motion studies of earthquake mechanisms (Sykes) 389–96
focal mechanism solutions 539–52
locating hypocenters (Sykes) 388–91
see also deep-focus earthquakes
thrust-fault type 568–70
East Chile Ridge 277
East Pacific Rise 54, 274–5, 301–2, 331–2
age of 50–1
dimensions of 50–1
extent of 52
Hess (Ottawa, 1965) 333–4, 335, 336–7
Lamont workers’ interpretation 307–9
origin of 56
seafloor thinning 51
Wilson 335, 336–7
Eckart, C. 204
EDSAC 2 computer (Cambridge) 64–5, 80–1
Everett’s use of 173–5, 178–9
use by Vine 240
Vine’s use for modeling magnetic anomalies 114, 115–16
Egyed, L., slow Earth expansion 33, 56, 216, 222, 223–4, 227, 228, 230, 232
Einarsson, T. 133–4
Ellesmere Island 48–9
Elsasser, W. M. 202, 219, 328, 333, 474, 483, 485, 493, 527, 540, 546–7, 549, 551
Eltanin-19 magnetic profile 366, 576
influence at Lamont 441
Opdyke’s response 366–7
use by Morgan 490–1
Eltanin-20 magnetic profile 365–6
Eltanin-21 magnetic profile 366
Eltanin survey magnetic profiles (Pitman) 363–74
Emilian, C. 136–7, 140
Emura 575
Engel, A. E. J. 253
Engel, C. G. 253
episodic seafloor spreading 559–60, 572
Eugeoisynclines 11
Euler angles 525–6
Euler poles 558–9, 602–4
instantaneous and finite 528–9
Euler poles, determining 518–22
Euler rotations 608–10
Euler’s Point Theorem 173–5, 178–9, 205–8, 477, 478, 481–5, 495–6, 510–12, 516, 518–22, 527, 558–9, 568
Everett, J. E. 164, 417, 495–6, 510–11, 527
continental fit results presented in 1964 178–85, 260–1
education and early career 171
fit of the continents around the Atlantic 170–86
Royal Society symposium (1964) presentation 170–86
testing Carey’s fit of the continents 172–5, 177–8
use of EDSAC 2 computer 173–5, 178–9
use of Euler’s Point Theorem 173–5, 178–9
work on continental fit 204–5, 206–7
evolution and past rotations of the plates 524–6
Ewing, J. 1, 247, 341, 425, 428–31, 559–60, 572, 588
Ewing, M. 1, 3, 23, 41, 52, 59, 64, 72, 81, 109, 168, 241, 246, 247, 270, 360, 389, 391–2, 396, 406, 407–8, 413, 417, 455, 559–60, 560–1, 572, 584, 588, 591–2
influence of his anti-mobilist attitude 424–7
influence on Oliver 438–40
marine magnetic anomalies 70–1
poor relationship with Hess 425–6
reluctantly accepts discontinuous seafloor spreading 428–31
seafloor sedimentation and seafloor spreading 341
expansionist view 1, 557–8, 570–1, 552
adoption by Wilson (1960) 33–5
and seafloor spreading 41
Heezen’s defense of 56–8
Menard’s attack on 56
views on (Royal Society, 1964) 169–70
see also rapid Earth expansion theories; slow Earth expansion
Explorer Ridge 304, 538–9
Falkland Islands, Matthews’ visit 88–9
Falkland Islands Dependency Survey (FIDS) 85, 88–9
Farallon plate 586, 598–9
fault plane solutions 527–8
fault plane solutions, Sykes’ 1967 paper 396–402
Ferraro, V. C. A. 514–15
Feynman, R. P., on open-mindedness 422
Field, R. M. 3
Fiji–Tonga region, deep earthquake studies 445
finite rotational poles 602–4
finite rotations 558–9
finite rotations (cont.)
describing 525–6
distinction from instantaneous rotations 528–9
first-motion studies 527–8
first motion studies of earthquake mechanisms
(Sykes) 389–96
Fisher, R. A. 456
Fisher, R. L. 167–8, 259, 444, 605
Fisher statistics 228–9
Fitch, F. J. 165
Fitch, T. 570
fixism 1
fixism–mobilism debate, outcome 612
Flavill, L. 91, 219
fluxgate magnetometer 78–9, 104
fossil corals, as dating tool 224–6, 230–1
Foster, J. H. 360–3
Foster, M. 457–8
Fowler, W. 457–8
fracture zones
Hess’s explanation for 260, 333–4
northeastern Pacific 275
Pacific Ocean floor 52, 53, 333–4
Francheteau 526, 538–9
Francis, T. J. G. 236
Fuller, M. 91
Funnell, B. 97, 360
GAD hypothesis 187
Galapagos Rift Zone 590–1, 597
Galapagos rise 194–5
Gartner, S. 431
Gaskell, T. G. 167–8
Gast, P. 395–6, 412–13
Gauss normal epoch 346–9, 358–9
Gauss normal series (deep-sea cores) 362–3
Gee, D. 457
Gee, Jeff 605
Gelik, A. 456–7, 458–9
Gelletich 142, 143, 319
geologic time, change in days in the year 230–1
geochemical periods, number of days in the year 224–6
Geological Society of America (GSA) fall 1966 meeting 417
November 1965 meeting 345–50
Geological Survey of Canada (GSC) 2
goal timescale, history of development 350–1
geomagnetic field reversals
and marine magnetic anomalies 105–7
and the Vine–Matthews hypothesis 62, 234
record in the seaﬂoor 134
status in the early 1960s 317–19
timescale 133–4
see also reversal timescale
geomagnetic timescales 558–60
geosynclinal theory 5–6, 11, 12
Gilbert, F. 209, 461–2, 515
Gilbert reversed epoch 368–9
Gilbert reversed series (deep-sea cores) 362–3
Gilchrist, L. 3, 125
Gill, A. 463
Gilliland, W. N. 263, 264–5, 286
Gilluly, J. 162, 185–6, 193
Girdler, R. W. 71–8, 81, 91, 101, 106, 164, 165, 215,
241, 272, 273, 380
Glass, B. 361–3
Glisé event 357–8
global kinematic model (Le Pichon) 552–62
Glossopteris flora distribution 155
Godby, E. A. 242–3, 386
Goddard conference (November 1966) 395–6, 402,
404, 409, 463
Bullard 412–13, 414, 415
cancellations and withdrawals 413
continental drift and seafloor spreading prevail 412–18
Le Pichon 413
MacDonald 412–13, 415, 417
McKenzie 463
Menard 413, 414–15, 417
Opdyke 412–13
sessions and participants 413–17
Vine 414
Goguel, J. 165
Gold, T. 28, 87–8
Gondwana 329
Gorda Ridge 297, 304, 534, 538–9, 581
Gough, D. I. 63, 141–3, 319
Graham, K. W. T. 29
Graham, J. W. 126–7, 246
Graindor, M. J. 168
Great Glen Fault, Scotland 30, 44–5, 46–50
Great Magnetic Bight 597, 598, 605
Green, C. 461–2
Green, R. 29, 31, 355, 356
Greenland 31, 48–9
greenstone rocks 17
Griffiths, D. H. 28, 31–2
Griggs, D. T. 19, 202, 375, 402
Grommé, C. S. 348, 351
Gross, H. 38
Grossling, B. 107
group-think, at Lamont 421–4, 439–40
Gulf of Aden
magnetic anomalies 71, 72–7
transform faults 272–3
Gutenberg, B. 160, 444, 551, 563–4, 572
Gutenberg fault zones 546–7
guyots 50–1, 54, 134–5

Index

Hales, A. L. 29, 166–7, 413
Hall, J. H. (later Ade-Hall) 101, 103–4, 105, 107, 116, 135
Hallam, A. 257
Hamilton, E. L. 201, 337–8
Hamilton, W. 21–2, 50, 593–4
Harland, W. B. 91, 92, 93–4, 166–7, 175–6, 185, 270, 458–9, 460
Harrison, C. G. A. 360
Haruna dacite 100–1
Hawaiian Islands, origins of 152–5
Hay, R. L. 351
Hayes, D. 584–6
Hays, J. D. 361
heat flow measurement
difficulty for seafloor spreading 405–12
history of measurement at sea 406
Heezen, B. C. 23, 25, 33, 41, 52, 59, 164–5, 167, 169–70, 185, 239, 270, 328, 330–1, 361, 413, 425, 484, 486
attack on seafloor spreading 56–8
attack on seafloor thinning 56–8
criticism of proposed convection patterns 57–8
Menard’s attack on Earth expansion 56
Mid-Atlantic Ridge magnetic anomalies 70–1
renounces rapid Earth expansion 405
support for rapid Earth expansion 56–8, 224, 227, 228, 231
accepts seafloor spreading 372–3
accepts the Vine–Matthews hypothesis 372–3
alternative to the Vine–Matthews hypothesis 249–55
arguments against seafloor spreading 304–10
axial and flank magnetic anomalies 320
becomes a mobilist 367–73
education and career 246
extends the reversal timescale 471
geomagnetic timescale 558–60
interpretation of Reykjanes Ridge symmetrical anomalies 310–16
motivation to prove Hess wrong 418–27
work in Ridge and Trough Province 304–10
work on marine magnetic anomalies 245–6
work on the Eltanin magnetic profiles 367–73
work on the Mid-Atlantic Ridge 248–9, 249–55
Hekinian, R. 254–5, 360
Henderson, P. 168
Herron, E. M. 365–6, 590–1
Hersey, J. B. 386
Herzenberg, A. 203
at Madingly rise (1965) 255–7, 258
award of the Penrose medal 418
cautions from Irving (1961) 58–61
changes to account of mantle convection 259–60
contribution with Menard about seafloor spreading 50–3
Darwin Rise 333–4
discussion of “crustal plates” 260
East Pacific Rise 333–4, 335, 336–7
explanation for fracture zones 260
fine turns and extends seafloor spreading (1965) 259–61
fracture zones in the Pacific 333–4
Heezen’s attack on seafloor spreading 56–8
Lamont workers’ prejudice against seafloor spreading 418–27
letter from Vine about Princeton 255–7
mantle convection 321–3
meeting with Holmes (1965) 257
Menard’s attack on seafloor spreading 200–2
nature of Layer 2 oceanic crust 214–15
on Lamont Reykjanes Ridge magnetic data 326
on Lamont seafloor sediments argument 344–5
on Wilson’s transform faults idea 261–2
origin of the Great Magnetic Bight 586–90
poor relationship with Ewing 425–6
presentation and discussion (Ottawa meeting, 1965) 333–7
response to Lamont heat flow difficulty 408–12
response to the Vine–Matthews hypothesis 210–15
seafloor spreading 37, 39, 41, 119, 155
seismic anisotropy in the upper mantle 210–14
significance of circum-Atlantic continental fits 260–1
source of marine magnetic anomalies in the crust 299
support for the Vine–Matthews hypothesis 334
UK lecture tour (1965) 255–7
work with Vine and Wilson 255, 259
Hey, D. 507
Hilgenberg, O. C. 230
Hirschman, J. 71
Hodgson, J. H. 22, 160, 392, 393, 449
Hodych, J. 38
Hollingsworth, S. E. 168
Holmes, A. 16, 18, 20, 49, 59, 81, 93, 94, 162, 241, 328, 458–9
meeting with Hess (1965) 257
on mantle convection 216, 217–23
on seafloor spreading 216–17
Principles of Physical Geology (1965) 216–27, 230
rejection of rapid Earth expansion 227

© in this web service Cambridge University Press

www.cambridge.org
Holmes, A. (cont.)
speculation on the cause of expansion 227
support for slow Earth expansion 216, 222,
223–6, 227, 230
support for Wilson’s work 216
Holmes, D. (Reynolds) 257
Holtedahl, O. 45
Hood, P. J. 242–3
Honda 575
horizontal displacements in the Earth’s crust (Royal Society, 1964) 164–5, 167–8
Hospers, J. 72, 74, 79–80, 81, 89, 98, 100, 122, 127,
133–4, 230, 319, 321, 461
hot spots within the mantle 152–5
Hoyle, F. 457–8
Hughes, N. F. 92, 93–4, 458–9
Humboldt, Alexander von 604
Hunkins, K. 442
Hurley, P. M. 184, 413, 417
IBM 650 computer 563–4
Ice Station Alpha (T3, Fletcher’s Ice Island) 441–2
Iceland 239–40
Icelandic lavas, dating of polarity reversals 357–8
Ichikawa 575
ICSU (International Council of Scientific Unions) line 301–2
Imbre, J. 413
Imperial College group 107–8, 114
India, northward drift 31–2
India, northward movement 608
Indian Ocean paleogeography (McKenzie and
Sclater) 605–9
Indian Ocean, transform faults 272–4
instantaneous rotational poles 602–4
instantaneous rotations 558–9
descrribing 525–6
distinction from finite rotations 528–9
Institute of Geophysics and Planetary Physics (IGPP) 204–5
International Union of Geodesy and Geophysics
(IUGG) 4
International Upper Mantle Committee meeting,
Ottawa 1965 see Ottawa meeting (September
1965)
inverse theory 515
Irving, E. 29, 31, 42, 79–80, 89, 98, 101, 127, 129,
144, 167, 175, 189, 227, 228, 272, 319, 328, 355,
356, 413, 416, 423, 460, 461, 605, 608
cautions to Hess (1961) 58–61
cautions about continental drift mechanism
debate 58–61
influence on Wilson 45–6
on J. Tuzo Wilson 26–7, 38–9
Inversion of Geomagnetic and Geophysical Data
(1964) 187–8, 215–16
Index
response to the Vine–Matthews hypothesis 215–16
Isacks, B. 386, 388–9, 395, 402
becomes a mobilist 441
every life and education 440
earthquake focal mechanism solutions 539–52
exploration of mantle subduction 446–56
Ph.D. thesis on high-frequency earthquake
waves 442–3
seismology and global tectonics 562–75
study of deep earthquakes 443–6
work at Lamont 440–3
work on Ice Station Alpha (T3, Fletcher’s Ice
Island) 441–2
work with Oliver 441–3
island arcs
and seafloor spreading 43–4
earthquake focal mechanisms 539–52
evolution into mountain belts 5–18
fault mechanisms beneath 22
length of seismic zones 575
lithosphere bending beneath 568–70
origins and evolution (Wilson) 41
island chains, creation of 152–5
Izu-Bonin 549–51
Jacobs, J. A. 27–31, 281, 283–4
Jaeger, J. C. 228
Jaramillo normal event (Jaramillo Subchron) 345–50, 351, 353, 357, 358, 362–3, 367–8, 375, 376, 380
Jardetsky, W. S. 264
Jardine 610
Jastrow, R. 412–13
Jeffreys, H. 18, 21, 33, 59, 87–8, 93, 96, 163, 166,
168–9, 235
contraction theory 6–7, 15
dismissal of Carey’s fit 170–1, 172–3
influence on Smith 176–7, 184–5
influence on Wilson 3, 25
on Hide’s thermal convection model 219–20
on the evidence for continental drift 190–1, 193
opposition to continental fit 184–5, 205
opposition to mobilism 185
Joint Oceanographic Institutions for Deep Earth
Sampling (JOIDES) 560
Jones, A. G. 262, 263, 274
Jones, D. L. 142
Jones, O. T. 93–4
Juan de Fuca plate 528, 534, 538–9, 586
Juan de Fuca region 530, 533
Juan de Fuca Ridge 274–5, 294–5, 534, 538–9, 581,
592
bilaterial symmetry of magnetic anomalies 295–7,
298–9
contrasting interpretations of discoveries 309–10
evidence for seafloor spreading 295–7

Index

evidence for the Vine–Matthews hypothesis 297–9
Lamont workers’ interpretation 304–10
similarity of the Eltanin magnetic profiles 365, 366–8
spreading rate 298–9, 345–50, 367–8
Kaena event 358–9, 378
Kalgoorie Series, Western Australia 17
Kapp, R. O. 227
Karring, D. E. 507–9
Karoo dolerites 29
Katsumata 575
Kay, M. 5–6, 9, 11, 13–14, 15, 413, 417, 439
Keevil, N. 125
Kent, Dennis 605
Kermadec region earthquake focal mechanisms 358–9, 378
Kiaman Reversed Superchron 318, 335
King, L. 4, 37–8, 155, 329, 439–40
King, P. B. 5–6, 9, 11, 13–14
Koenigsberger, J. G. 321
Koenigsberger ratio 104, 135, 215–16, 315, 316, 319
Köppen, W. 608, 610
Krause, D. C. 102
Kropotkin, P. N. 169
Kula plate 586
Kumaratnam, K. 65, 107–8, 114, 115–16, 117
Kuriley 549–51
Lamont Geological Observatory 51, 63, 64, 71, 72–8, 79, 109, 143–4, 168, 202, 234, 265, 406, 530–1, 533, 547, 560–1, 591–2, 605
alternative to the Vine–Matthews hypothesis 249–55
Atwater’s visit 578
disagreement with Morgan 505
discovery of support for Vine–Matthews 248–9
group-think and bias 421–4, 439–40
heat flow over the Mid-Atlantic ridge and seafloor spreading 405–12
influence of Ewing’s anti-mobilist attitude 424–7
insular research philosophy 444
integrating seismology and global tectonics 562–75
lack of interest in Morgan’s work 552–3
motivation to prove Hess wrong 418–27
seafloor sedimentation and seafloor spreading 341
six-plate model 553–62, 564–6, 570–1
solitary follow-up on Morgan’s work 552–3
testing Morgan’s version of plate tectonics 552–62
work at Lamont 247
work in Ridge and Trough Province 304–10
work on marine magnetic anomalies 245–6
work on the Mid-Atlantic Ridge 248–55
Lench, Laszlo 593, 594
Lister, C. R. B. 411, 468
Lithosphere 568
bending beneath island arcs 568–70
Loncarevic, B. D. 323–4, 327
Lyell, C. 456–7, 458–9
Ma, T. Y. H. 226
MacDonald, G. J. F. 21, 53, 59, 163, 166, 177, 185, 193, 201, 204, 235, 408, 412–13, 415, 417, 458, 459, 461–2
seismologists 562–75
symmetrical anomalies on Reykjanes Ridge 310–16
trenches viewed as regions of tension 570
view of mid-ocean ridges 248–9, 304–16
work in the northeast Pacific 304–10
work of Heirtzler 246
work of Le Pichon 247
work of Talwani 246
work on the Mid-Atlantic Ridge 245–6, 248–55
work on the Reykjanes Ridge 246
Landsman, M. 74, 388, 389
Langseth, M. 330, 405–12, 467
Larochelle, A. 129, 130, 137, 138
Latham, G. 442
Laughton, A. S. 69, 83, 90, 102, 105, 236, 272–3, 319, 331
early life and career 79–80
magnetic anomalies and seamounts 78–9, 81–2
Le Pichon, X. 235, 365–6, 378, 413, 414, 417, 467, 468–9, 478, 484, 494, 503, 505, 507, 526, 529, 530–1, 533, 536–9, 544, 570, 605
accepts seafloor spreading 374
alternative to the Vine–Matthews hypothesis 249–55
arguments against seafloor spreading 304–10
axial and flank magnetic anomalies 320
education and career 247–8
episodic seafloor spreading 572
global kinematic model 552–62
heat flow difficulty for seafloor spreading 405–6, 407–8
interpretation of Reykjanes Ridge symmetrical anomalies 310–16
motivation to prove Hess wrong 418–27
seafloor sedimentation and seafloor spreading 341
six-plate model 553–62, 564–6, 570–1
solitary follow-up on Morgan’s work 552–3
testing Morgan’s version of plate tectonics 552–62
work at Lamont 247
work in Ridge and Trough Province 304–10
work on marine magnetic anomalies 245–6
work on the Mid-Atlantic Ridge 248–55
© in this web service Cambridge University Press

www.cambridge.org
magnetic anomalies, question of self-reversal 318–19 see also marine magnetic anomalies
magnetic field reversal see geomagnetic field reversals; reversal timescale
magnetometers 91
fluxgate magnetometer 78–9, 104
proton precession magnetometer 78–9, 104, 109
Mammoth event 352, 358, 362–3, 378
mantle convection 1
and continental drift (Royal Society, 1964) 165, 168
and seafloor spreading 46, 302–3
Coode 287–8
debate over role in seafloor spreading 58–61
disagreement between Runcorn and Hamilton 337–8
disconnection from ridge formation 277
Vine 321–3
Wilson’s dismissal of 18–20
mantle subduction, work of Isacks and Oliver 446–56
map-projecting program (Parker) 514
Marianas region 549–51
Marine Geology of the Pacific (Menard, 1964) 53–6
marine magnetic anomalies 527–8
application of Euler’s Point Theorem 205–8
Backus’ analysis 205–8, 210
bilateral symmetry about spreading ridges 299–310
computer modeling 64–5
development of interpretative models 64–5
development of the Vine–Matthews hypothesis 114–24
Dickson’s hypothesis 143–4
distribution of the source in the crust 299
dominance of remanent magnetization 319
early attempts to explain 63–5
Eltanin survey magnetic profiles 363–74
Gough, McElhinny, and Opdyke’s hypothesis 141–3
greater amplitude of the central anomaly 323–5
Hess (Ottawa, 1965) 333–4
interpretation challenges 104–8
interpretation of ridges (prior to Vine) 70–8
interpretation of seamounts (prior to Vine) 78–84
Matthews’ graduate work at Cambridge 89–91
Morley’s hypothesis 130–6
nature of the magnetic body 64
northeast Pacific interpretation (prior to Vine) 65–70
Pitman’s “magic” profile 363–74
potential causes 63–4
relation to topography 64
reversed magnetization caused by field reversal 105–7
significance of remanent magnetization 105
size of the central anomaly 299
use of computer simulations 104–5, 107–8
Vine’s review of literature 104–8
Martin, H. 183
Marvin, U. 405
Masatsuka 575
northeast Pacific magnetic anomalies 65–9
northeast Pacific magnetic survey 130–1, 132, 134–6, 142
on marine magnetic anomalies 101–2, 103–4
basaltic nature of ocean rocks 89–90
becomes sympathetic to continental drift 88–9
becomes Vine’s supervisor 97–9
Carlsberg Ridge survey (1962) 64, 65, 99, 109–14
data from Carlsberg Ridge survey 114
defense of the Vine–Matthews hypothesis 236–40
early life and career 84–7
graduate work at Cambridge 89–91
greater amplitude of the central anomaly 323–5
importance of spirituality 85–7
influence on Vine 99–101
on Wilson’s transform faults idea 261, 262
Owen Fracture Zone 261, 262, 272, 273–4
remanent magnetization of ocean basalts 90–1
response to Lamont magnetic anomaly profiles 312–13
response to Vine’s draft paper 122–3
shared views with Vine 91
support for mantle convection 240
sympathetic view of mobilism 89
time in Antarctica 85–7
view of drift while an undergraduate 87–8
visits the Falkland Islands 88–9
see also Vine–Matthews hypothesis
Matuyama–Brunhes boundary 352–3, 354–7
Matuyama epoch (Chron) 345–50
Glisis event 357–8
Matuyama reversed series (deep-sea cores) 362–3
Maxwell, A. E. 560
Maxwell, J. 176
McConnell, R. K. 413
McDougall, I. 234, 352, 353–8, 358, 378
McElhinny, M. W. 63, 141–3, 318, 354, 610
McFadden, P. L. 318
McKenzie, D. P. 277, 302, 337–8, 385, 402, 403, 413, 423–4, 539, 554–6, 573–5, 577, 578
early life and education 456–8
early response to Vine–Matthews 459–60
evolution of triple junctions 591–604
heat flow data in terms of seafloor spreading 463–9
independent discovery of plate tectonics 494–510
Indian Ocean paleogeography 605–9
keys to his discovery of plate tectonics 510–15
learning of Morgan’s plate tectonics work 503–4, 505–10
letters from Morgan 529–39
model of mid-ocean ridges 463–9
on Bullard 175
on paleomagnetic support for mobilism 460–1
on the shape of the Earth 462–3
Ph.D. thesis 462–3
rotation of plates about triple junctions 517–18, 522–6
time in the US (1965) 461–2
use of slip vectors to determine Euler poles 518–22
version of plate tectonics 516–26
version of plate tectonics compared to Morgan’s 527–39
McKenzie, N. (née Fairbrother) 456, 458–9
Melanesian Rise 54
accepts seafloor spreading 403–5
active oceanic rises 54–5
attack on Earth expansion (Wilson) 56
attacker on seafloor spreading 200–2
attack on Wilson’s oceanic island work 198–200
correspondence with Hess about seafloor spreading 50–3
extent of mid-ocean ridge system 52
fracture zones in the Pacific 52, 53
growing doubts about paleomagnetic evidence 52–3
Heezen’s attack on seafloor thinning 56–8
loss of enthusiasm for mobilism 55
Mesozoic Mid-Pacific Ridge 50–1, 54
on Lamont seafloor sediments argument 344–5
on Wilson 148–9
origins of ocean ridges 53–6
patterns in distribution of ocean ridges and rises 193–8
re-embraces fixism 52–3, 193–8
seaﬂoor thinning theory 51, 53–6
width of ocean ridges 51
Mendocino Fracture Zone 45, 65, 68, 263, 264, 275, 577–84
basalts 103–4, 105
relation to the San Andreas Fault 599–602
Mendocino triple junction 524, 525, 578
mesosphere 568
Mesozoic Mid-Pacific Ridge 50–1, 54
Meyer, B. 176
Mid-Atlantic Ridge 40, 54–5
equatorial fracture zones 271–2
magnetometer surveys 70–1
origins of 57
rift valley 70–1
termination in the North Atlantic 269–71
transform faults associated with 269–72
Middle America region 549–51
Mid-Indian Ocean Ridge 54–5
mid-ocean ridges 56
age of 50–1
and Earth expansion (Wilson) 33–5
discovery of 52
origin of 44
width of 50–1
Wilson’s explanation (1959) 23–5
see also oceanic ridges
Mid-Pacific Ridge (Mesozoic) 50–1, 54
Miller, J. A. 165, 177, 183, 343
miogeosynclines 12
mobilism 1
and uniformitarianism 41
explanation for mountain belt formation 44–5
Wilson’s rejection of (1959) 21–31
mobilism, support from paleomagnetism 604–12
mobilism–fixism debate, outcome 612
Moho discontinuity 65
Mohole project 102–3, 106–7, 123–4
Mohn’s theory of fracture 7, 12, 22
Moine Thrust, Newfoundland 49
Moon, origins of 18
Molnar, P. 539, 540, 547–52
Morgan, W. J. 208, 247, 333, 337, 385, 578, 579
disconnecting mantle convection and ocean ridges 494
discovery of plate tectonics 476–8
discussions with Vine 474
early life and education 474
evolution of triple junctions 591–604
factors affecting location of ocean ridges 494
identifies crustal block boundaries 485
Le Pichon’s test of plate tectonics 552–62
Le Pichon’s understanding of his work 552–3
letters to McKenzie 529–39
move to Princeton 474
paper on crustal blocks (1968) 485–94
Index
Morgan, W. J. (cont.)
preparation of his paper on plate tectonics 478–81
presentation of plate tectonics to the AGU (April 1967) 478–9, 481–5
relative movement of African and South American blocks 486–90
relative movement of Antarctic and African blocks 492–3
relative movement of Pacific and Antarctic blocks 490–1
relative movement of Pacific and North American blocks 490
reviews of his paper on plate tectonics 479–81
rigidity of crustal blocks 485, 493
structure of crustal blocks 494
structure of ocean ridges 494
three types of block boundaries 485
transfer of transform faults to a sphere 485
use of Euler’s Point Theorem 485
version of plate tectonics 553
version of plate tectonics compared to McKenzie’s 527–39
work on mantle convection 476

Morley, L. W.
accepts continental drift 129
accepts geomagnetic field reversals 127–9
aeromagnetic survey work 126, 127, 129
education 125–7
influence of seafloor spreading 131–2
interpretation of northeast Pacific magnetic survey 130–1, 132
magnetization of seamounts 134–5
using paleomagnetism to test continental drift 126–7
Morley’s hypothesis 62–3, 124–5, 130–6
appearance of Vine and Matthews’ paper 137–8
attempts to get his paper published 136–9
differences from Vine and Matthews 134–6
induced magnetization 134–6
interpretation of NE Pacific magnetic survey 134–6
pattern of magnetic anomalies 134
published versions of his paper 132–6
reasons for rejection of his paper 139–41
rejections of his paper 132, 136–9
timescale for field reversals 133–4
Mount Hague 3
mountain belt formation and mobilism 39, 44–5
contraction theory of evolution 5–18
mountain building, difficulties with continental drift 18–20, 20–1
Mudie, J. 495, 496, 507, 509
Mudie, John 577, 578
Munk, W. H. 53, 148, 204, 413, 414, 458, 461–2
Murray escarpment/fracture zone 44–5
Murray Fracture Zone 65, 69, 275, 578–84

Nafe, J. E. 364
Nairn, A. E. M. 29, 166–7, 175
National Institute of Oceanography (NIO), UK 79
National Research Council (NRC) of Canada 4
natural remanent magnetism (NRM) 604–12
Nature
acceptance of Vine and Matthews paper 139–41
rejection of Morley’s paper 136–7, 139–41
Nél, L. 89, 321
Nelson, H. J. 38
Nettleton 65
new global tectonics 562–75
New Hebrides 549–51
New Zealand 549–51
New Zealand, support for Vine–Matthews hypothesis 241–2
Newcastle conference (1965) 391–2
Newer Volcanics of Victoria, dating of polarity reversals 355–7
Nicholls, G. D. 165
Ninkovich, D. 361
North American block, movement relative to the Pacific block 490
North American Geosynclines (Kay) 5–6
North America, tectonics of its western margin 598–602
North Honshu region 549–51
north Pacific, origin of the Great Magnetic Bight 584–91
northeast Pacific challenges of unraveling its Cenozoic history 338–9
evolution of 598–602
explanations for anomalies 528
fracture zones 275
magnetic anomalies, interpretations prior to Vine 65–70
magnetic survey 130–1, 132, 134–6, 142
work at Lamont 304–10
work of Wilson and Vine 294–304
northeast Pacific fracture zones, application of plate tectonics 576–84
O’Keefe, J. A. 168
oceanic basalts 89–90
remanent magnetization 90–1
oceanic islands, Wilson’s study of 148–62
oceanic ridge crest basalts, dating by Lamont workers 343–4
oceanic ridge formation, separation from mantle convection 277
oceanic ridges
factors affecting location of 494
magnetic anomaly interpretation (prior to Vine) 70–8
migration theory (Wilson) 41–2, 46, 57, 60
origins of (Menard) 53–6

Index
structure of (Morgan) 494
surrounding Antarctica 41–2, 46, 57, 60, 275–7, 302–3
see also mid-ocean ridges
Oell, N. 2–3
Olduvai normal event 346–9, 351–2, 355, 357–8, 362–3
Oliver, J. 386, 387, 388–9, 392, 395, 402, 426–7, 540–8
early life and education 438–40
explanation of mantle subduction 446–56
influence of Ewing 438–40
seismology and global tectonics 562–75
study of deep earthquakes 443–6
work at Lamont 438–40
analysis of Lamont’s deep-sea cores 359–63
arrival at Lamont 359–60
influence on Pitman 366–7
response to the Eltanin-19 magnetic profile 366–7
reversal timescale based on deep-sea cores 359–63
ophiolites 9, 11
Ornach-Nal Fault 262, 272
orogenesis and mobilism 39
orogeny and slow Earth expansion (Wilson) 33–5
orogenic belts, Caledonides 45
Orowan, E. 166, 260, 328
Osemeikhian, J. 172
Ottawa meeting (September 1965) 325–38
disagreement on mantle convection 337–8
Hess’s presentation and discussion 333–7
range of topics of disagreement 337–8
Talwani’s presentation 326–8
Wilson’s presentation and discussion 328–33
Owen Fracture Zone 261, 262, 272, 273–4, 331
Oxburgh, E. R. 168, 466–7
Pacific–Antarctic Ridge 54–5
Pitman’s “magic” profile 363–74
Pacific block
movement relative to the Antarctic block 490–1
movement relative to the North American block 490
Pacific Ocean
great fracture zones 301–2
seafloor downwarping (Wilson) 155
transform faults 274–7
see also northeast Pacific
paleoclimatic evidence 31–2
support for mobilism 45–6
paleogeography
contributions of plate tectonics and APW paths 604–12
extending further back in time 604–12
Indian Ocean (McKenzie and Sclater) 605–9
mapping (Smith and Briden) 608–10
paleomagnetism
support for the mobilist argument 604–12
history of study 604–12
Paleomagnetism and Its Application to Geological and Geophysical Problems (Irving, 1964) 187–8, 215–16
paleomagnetism’s support for mobilism 25–7,
27–31
attack by Wilson 34–5
Blackett’s view 190
Bullard’s view 191–2
challenge of persuading doubters 186–7
comparison with other support 189
difficulty-free status 191–2
GAD hypothesis 187
influence on Pitman 366–7
Irving’s monograph 187–8
Jeffreys’ view 190–1
Menard’s growing doubts 52–3
Rutten’s perspective 189
solution to divergent APW paths 186–7
status of the debate by 1964 186–92
taphonomic evidence, as a dating tool 224–6
Pangea 40
Parker, R. L. 323–4, 337–8, 459, 464, 527, 554–6, 577
education and career 512–15
map-projecting program 514
response to Vine–Matthews hypothesis 513
version of plate tectonics produced with McKenzie 516–26
work with McKenzie on plate tectonics 516, 525, 494, 495, 496, 497–502, 503–4, 512, 514, 515
Parsons, B. 468
paving stone theory, McKenzie and Parker 516–26
Peter, G. 72–8, 81, 106, 235, 243–4, 273, 380, 587
Peters, L. 126
Pettersson, H. 406
Philippines 549–51
Phinney, R. 591
Philipps, J. D. 478, 484
Physics and Geology (Jacobs et al., 1959) 27–31
Pilansberg dykes, South Africa 142
Pioneer Fracture Zone 65, 579, 583, 584
Pitman, W. C. 236, 375–6
accepts seafloor spreading 372–3
accepts the Vine–Matthews hypothesis 372–3
becomes a mobilist 366–7
early life and education 363–4
Eltanin-19 profile 363–74, 392, 490–1
Eltanin survey 338
Eltanin survey magnetic profiles 363–74
“magic” profile over the Pacific–Antarctic ridge 363–74, 392, 490–1
Pitman, W. C. (cont.)
move to Lamont 363–4
work on the Eltanin magnetic profiles 367–73
plate evolution and stability of triple junctions 595–8
changes in plate motions 602–4
plate rigidity 537
evidence for 556–7
plate tectonics 60–1, 208
application to paleogeography 611–12
application to NE Pacific fracture zones 576–84
as a kinematic theory 277
comparison of Morgan and McKenzie's versions 527–39
conceptualization 528–9
discovery by Morgan 476–8
explanations for NE Pacific anomalies 528
impacts of the concept 611–12
keys to McKenzie's discovery 510–15
impacts of the concept 611–12
kinematic methods of testing 527–8
Le Pichon's test of Morgan's work 552–62
mantle convection and ridges 586
McKenzie and Parker's version 516–26
McKenzie's independent discovery 494–510
Morgan's explanation (AGU 1967) 481–5
Morgan's first talk on 247
Morgan's preparation of his paper 478–81
Morgan's presentation to the AGU (April 1967) 478–9, 481–5
testing by Morgan and McKenzie 528
work of seismologists 562–75
plates on the Earth's surface evolution and past rotations 524–6
types of plate borders (Wilson) 265–6
Wilson 265–6
see also crustal blocks/plates
Plumstead, E. P. 4, 37–8
polar wandering, view of Jacobs, Wilson, and Russell 25–9
polarity reversals see geomagnetic field reversals
Poldervaart, A. 440
Prague, A. 456
Precambrian, continental evolution (Wilson) 15–18
Press, F. 64, 71, 72, 81, 413, 414, 439
Princeton 591–2
Principles of Geodynamics (Scheidegger) 31–2
Principles of Physical Geology (Holmes, 1965) 216–27, 230, 230
proto-Atlantic (Argand) 40, 49
proton precession magnetometer 78–9, 104, 109
quaternions 525–6
Queen Charlotte Islands Fault 274–5
Quesnell, A. M. 272
radiometric dating, Canadian provinces 15–16
radiometrically dated reversal timescale 298, 351
Raff, A. D. 65, 96, 123–4, 207, 241, 294–5, 304, 382, 403, 416, 590–1
northeast Pacific magnetic anomalies 67–9
northeast Pacific magnetic survey 130–1, 132, 134–6, 142
on marine magnetic anomalies 102–3
Raitt, R. W. 51, 78–9, 167, 210–14, 304, 552
Ramberg, R. 195–7
Rand, J. R. 413
rapid Earth expansion 570–1, 552
rapid Earth expansion theories 1, 33
attacks on (1964–1964) 227–32
Carey 224, 227, 228, 230, 231
Heezen 224, 227, 228, 231, 328
Heezen renounces 405
rejection by Holmes 227
Runcorn's attack on 230
Ward's attack on 227–30
Rat Islands 530, 533, 535
Raven, J. 456
Red Sea magnetic anomalies 71–2, 82–4
transform faults 272–3
remenant magnetization of ocean basalts 90–1, 234
dominance in marine magnetic anomalies 319
Koenigsberger ratio 104
Mendocino Fracture Zone basalts 103–4
significance in magnetic anomalies 105
Research Strategy 1 (RS1)
agreement between anomaly patterns from different locations 380
agreement between determinations of Atlantic opening 431
agreement between independent dating methods 363
agreement between independent reversal dating methods 380
agreement between reversal dating methods 298
agreement between Runcorn and Ward's calculations 231
agreement between seafloor spreading rates 381
agreement between sediment and magnetic findings 431
agreement of paleogeographic data 607
aspects of continental fit 183
calculating the rate of seafloor spreading 239
consilience between data used for reconstructions 605
consilient instantaneous relative plate motion
determinations 594
consilience throughout evidence for seafloor spreading 431
counterexample to support ridge activity 386
delineation of the Juan de Fuca Ridge 297
explanation of east Pacific magnetic anomalies 239
intensity of remanent magnetization of basalts 321
Juan de Fuca as a spreading ridge 294–5
matching magnetic profiles across different ridges 431
McKenzie’s solution to seafloor spreading difficulties 464
Morley’s explanation of marine magnetic anomalies 133
past movement of Africa 151
removal of difficulties for the Vine–Matthews hypothesis 297
removal of plate tectonics difficulties (McKenzie) 522–6
response to difficulties with seafloor spreading 35
unrecognised problems in seafloor spreading 149
Vine–Matthews hypothesis as difficulty-free 297
Wilson on continental evolution 15
Wilson on continental nuclei 17
Wilson on continental shelf formation 18
Wilson on fractured arcs 12
Wilson on island arc formation 7
Wilson on mountain belt formation 7, 12
Wilson’s explanation of the Wadati–Benioff zone 7
Wilson’s recognition of Juan de Fuca Ridge 294–5
Wilson’s secondary mountain belts 12
Research Strategy 2 (RS2), Carey’s view of trenches 570
Research Strategy 2 (RS2), continental drift and mountain building 18
differences between axial and flank magnetic anomalies 320
difficulties with constant seafloor spreading 428
difficulties with explanations for the Scotia Arc 88
difficulties with explanations of magnetic anomalies 133
difficulties with McKenzie and Parker’s plate tectonics 522–6
difficulties with mobilism (Jacobs et al.) 30
difficulties with patterns of convection cells 57
difficulties with seafloor spreading 35, 52, 57
difficulties with the Vine–Matthews hypothesis 209–10, 249, 431
difficulty with continental fit 182, 185
difficulty with contractionism 34
difficulty with Earth expansion 56
difficulty with mantle convection 18, 221
difficulty with mid-oceanic ridges 57
difficulty with origin of marine magnetic anomalies 67
difficulty with seafloor subduction results 391
distribution of guyots and atolls in the Pacific 50
Ewing’s difficulty with seafloor spreading 342
explanations for the central magnetic anomaly 239
Hess’s response to heat flow difficulty 408
importance of raising difficulties in science 418
island age and distance from the ridge 150, 199
lack of seismic detection of magnetic anomalies 68
magnetic anomaly correlation with topography 68
Menard on Wilson’s origin of island chains 199
mobilism and uniformitarianism 41
Morley’s difficulty with marine magnetic anomalies 133
origin of transcurrent faults (Wilson) 34
poor fit in magnetic profiles with normal magnetization only 118
Scheidegger on mantle convection 20, 21
Scheidegger’s difficulties with continental drift 20
support for reversed magnetization 118
Wilson’s difficulties with mantle convection 19, 20
Research Strategy 3 (RS3)
alternative explanation for island arcs 41
alternative theory to seafloor spreading 52
alternatives to fixist solutions 149
contractionism preferred to mantle convection 18, 20
difficulty with contractionism 21
features explained by mantle convection 34
Morley’s hypothesis compared to other explanations 133
seafloor thinning as alternative to expansion 56
slow expansion as alternative to contractionism 34
Vine’s explanation of marine magnetic anomalies 121
Réunion volcanics, dating of polarity reversals 353–5
Revelle, R. 204, 406
reversal timescale 60
accurate dating by USGS 345–50
based on deep-sea cores 359–63
contribution to the mobilism debate 351
extension by Heirtzler 471
history of development 350–9
improvements during 1966 350–9
radiometric dating of reversals 298, 351
work of the ANU group 351, 353–9
work of the USGS Menlo Park group 351–3
work on Eltanin magnetic profiles 368–9
Reykjanes Ridge 246, 248, 251–2
similarity to Eltanin magnetic profiles 367–8
spreading rate 367–8
Richter, C. F. 160, 444, 551, 563–4, 572
ridge-ridge-ridge (RRR) triple junctions 584–91, 595–8
see also triple junctions
ridge-ridge transform faults see transform faults
ridges see mid-ocean ridges; oceanic ridges
Riviera triple junction 602
Rocchi, A. 128–9, 317
Ross, D. J. 241–2, 380
Rothé, J. P. 247, 563–4
Royal Society 459
Royal Society symposium on continental drift
(1964) 162, 459
balance of viewpoints of participants 163–70
balance of viewpoints on mobilism 169
Continental reconstructions (session 1) 163–4, 166–7
Convection currents and continental drift
(session 3) 165, 168
Everett, Bullard, and Smith’s fit of the continents
170–86
Gilluly’s review 193
Horizontal displacements in the Earth’s crust
(session 2) 164–5, 167–8
influence of paleomagnetism on participants’
views 169
Menard re-embraces fixism 193–8
Menard’s attack on Wilson’s work 198–200
Menard’s attack on seafloor spreading 200–2
organization by Runcorn 162–3
participants 163–70
Physics of convection currents in the Earth’s
mantle (session 4) 166, 168
reactions to the continental fit model 185–6
status of paleomagnetism’s support for mobilism
186–92
status of the mechanism difficulty 192–3
structure of the sessions 163–70
Vacquier’s difficulties with the Vine–Matthews
hypothesis 209–10
views on Earth expansion 169–70
Rubey, W. W. 202, 418
Runcorn, S. K. 27, 31, 76–7, 79–80, 87–8, 101,
127–9, 138–9, 163–4, 166, 175, 178, 202, 203,
219, 221, 257–8, 281, 329, 332–3, 335, 460, 461,
463
attack on rapid Earth expansion 230
Continental Drift (1962) 106
mantle convection disagreement with Hamilton
337–8
organization of the Royal Society symposium
(1964) 162–3
Russell, R. D. 27–31
Rutten, M. G. 166–7, 189
Ryuhyu 549–51
Saito, T. 343–4
San Andreas Fault 30, 44, 274–5, 295–7, 298, 309,
400, 518, 524, 525, 538–9, 577–8
origin of 599–602
relation to the Mendocino Fracture Zone
599–602
Scheidegger, A. E. 11, 12, 15, 22, 23, 25, 26, 33, 39,
40, 156, 160
acknowledges paleomagnetic support for
mobilism 31–2
attack on continental drift 20–1
attack on mantle conversion 20–1
development of Jeffreys’ contraction theory 6–7
Slater, J. G. 140, 173, 236–7, 295, 410–12, 459,
468, 494, 507–9, 593, 605–9
Scotia Arc, origins 88–9
Scripps Institution of Oceanography 51, 53, 54,
108, 109, 141, 142, 167–8, 204, 209, 244, 253,
259, 360, 372, 406, 414–15, 416, 444, 461–2,
463, 515, 554–6, 576–84, 605
Scrutton, C. T. 231
sea-floor basalts 89–90
sea-floor evolution, competing theories 1
sea-floor sedimentation
and sea-floor spreading 341, 343–5
lack of Pre-Cretaceous sea-floor sediments 43–4
sea-floor spreading 131–2, 527
and Earth expansion 41
and fracture zones 52, 53
and heat flow over the Mid-Atlantic ridge 405–8,
408–12
and island arcs (Wilson) 43–4
and mantle convection 46, 302–3
and RRR triple junctions 584–91
and sedimentation 341, 343–4, 344–5
and the Vine–Matthews hypothesis 62
bilateral symmetry of magnetic anomalies
299–301
Dietz 37, 39, 41, 53, 96, 106, 119, 131–2, 143, 155,
217, 218
discussion between Bernal and Dietz 35–6
Eltanin survey magnetic profiles 363–74
episodic 559–60, 572
evidence for continuous spreading 560
first published exchange about 35–6
fossil evidence against 343–4
Heezen’s attack on 56–8
Heirtzler accepts 372–3
Hess 37, 39, 41, 119, 155
Hess finite tunes and extends his account 259–61
Homes’ view (1965) 216–17
ideas which developed from 59–61
increasing continental thickness 41
Juan de Fuca Ridge evidence 295–7, 299–301
Le Pichon accepts 374
McKenzie’s solution to difficulties 463–9
mechanism difficulty 58–61
Menard accepts 403–5
Menard’s attack on 200–2
Menard’s correspondence with Hess 50–3
ocean ridges around Antarctica 41–2
Index

origin of the Great Magnetic Bight 584–91
Pitman accepts 372–3
Pitman’s “magic” profile 363–74
premise of the Vine–Matthews hypothesis 234–6
reasons for eventual general acceptance 431–4
rejection at Lamont 304–10, 310–16
Talwani accepts 373–4
Wilson’s comments on consequences 39–42
Wilson’s search for evidence 148–62
Zed patterns 581–4
seafloor spreading rate
based on the Vine–Matthews hypothesis 298–9
calculating the rate of spread 239
Juan de Fuca ridge 345–50
Vine and Wilson’s determinations 298–9
seafloor subduction, Sykes’ evidence for 388–91
seafloor thinning theory 1
and width of ocean ridges 51
Heezen’s attack on 56–8
Menard’s explanation 51
seamounts 50–1
Kunaratnam’s computer program 107–8
magnetic anomalies 101–2, 105–6, 134–5
magnetic anomaly interpretation (prior to Vine) 78–84
magnetization 68–9
sedimentary rock, conversion to metamorphic rock 43–4
seismic anisotropy in the upper mantle (Hess) 210–14
seismic profiling of the continental crust around
Britain (BIRPS) 87
seismology and plate tectonics 562–75
self-reversal of rock magnetization 318–19
self-reversing Haruna dacite 100–1
serpentinitized peridotite 70, 136
Serra Geral basalts, South America 29
Shackleton, R. M. 166–7, 185
Shire, E. 79
six-plate model (Le Pichon) 553–62, 564–6, 570–1
Shor, G. G. 51, 167, 210–14, 332
Sigurgeirsson, T. 133–4
slip rate and length of descending seismic zone 575
slow Earth expansion
adoption by Wilson (1960) 33–5
and seafloor spreading 41
Egged, 33, 56, 216, 223–4, 227, 228, 230, 232
Holmes’ speculation on the cause 227
Holmes’ support for 216, 222, 223–6, 227, 230
Smith, A. G. 164, 174, 417, 495–6, 510–11, 527, 608–10
continental fit results presented in 1964 178–85, 206–7, 260–1
contribution to the fit of continents 177
education and early career 175–7
fit of the continents around the Atlantic 170–86
influence of Jeffreys 176–7, 184–5
Royal Society symposium (1964) presentation 170–86
Smith, S. M. 194–5
South African dolerites 29
South America, fit with Africa 170–86
South American block, movement relative to the
African block 486–90
Spain, rotation relative to France 28
spiner magnetometer 127
Sprague 108
stable triple junctions 595–8
Stacey, F. 144, 366, 367
Stauder, W. V. 393–4, 402–3, 449, 511–12, 530, 533, 534–5, 536–7, 570, 575
Steenland, N. C. 65
Stehli, F. G. 413
Steinhart, John 176
Stewart, H. B. 235, 243–4
Stokoe, Austin 456
Stubbs, Peter 42
subduction rate calculation 571–2
subduction, work of Isacks and Oliver 446–56
Suess, F. E. 45, 49
Sunda region 549–51
Sutton, J. 167–8
accepts the Vine–Matthews hypothesis 392
computer program to process earthquake data 389
confirms ridge-ridge transform faults 386–403
contact with Wilson 396
early life and education 386–7
early skepticism about continental drift 387–8, 391–2
evidence for seafloor subduction 388–91
fault plane solutions paper (1967) 396–402
first motion studies of earthquake mechanisms 389–96
locating hypocenters of earthquakes 388–91
move to Lamont 387
Ph.D. work on shallow earthquakes 388
response to Pitman’s “magic” profile 392
seismology and global tectonics 562–75
talk at the Goddard conference (1966) 402
tests Wilson’s transform fault proposition 389–96
Talwani, M. 71, 238, 239, 247, 253, 315–16, 329–30, 484
accepts seafloor spreading 373–4
arguments against seafloor spreading 304–10
education and career 246

© in this web service Cambridge University Press

www.cambridge.org
Talwani, M. (cont.)
motivation to prove Hess wrong 418–27
presentation (Ottawa meeting, 1965) 326–8
rejection of seaﬂoor spreading 326–8
rejection of the Vine–Matthews hypothesis 326–8
response to the Vine–Matthews hypothesis 202
work at Lamont 246
work in Ridge and Trough Province 304–10
work on marine magnetic anomalies 245–6
Tarling, D. H. 234, 272, 281, 352, 355, 358–9
Taylor, F. B. 36, 611
Taylor, Isabel 577
Taylor, J. H. 166–7, 185
Cabot Fault–Great Glen Fault 46–50
tectonic theory, requirements (Wilson) 42–6
Tharp, M. 71, 164–5, 169–70, 185, 330–1, 486
The Evolution of North America (King) 5–6
The Pulse of the Earth (Umbgrove) 5–6
thrust-fault earthquakes 568–70
Thom, T. 3
Thompson, G. A. 214, 331–2
 Tilley, C. E. 215
Tobin, D. G. 389, 530, 533, 534
Tonga–Fiji region earthquake focal mechanisms 539–52
Tozer, D. C. 166, 169–70, 227, 281, 328, 333, 459, 462
transcurrent faults 22, 30–1, 47
and expansion (Wilson) 34
differences from transform faults 268
direction of motion 268
Wilson’s global perspective 264
Wilson’s paper model 268
transform fault trends 527–8
transform faults 44, 50, 59–61, 110, 111, 513–14, 527
and aseismic ridges 301–2
Arabian Sea 272
associated with Carlsberg Ridge 272
associated with Mid-Atlantic Ridge, 269–72
Coode’s independent idea 280
Coode’s mention of the idea to Wilson 262, 263, 264
development of Wilson’s idea 261–8
differences between Coode and Wilson’s accounts 288–9
differences from transcurrent faults 268
direction of motion 268
first motion studies of earthquake mechanisms (Sykes) 389–96
Gulf of Aden 272–3
identification worldwide by Wilson 269–78
implications for continental drift 267–8, 278
Indian Ocean 272–4
Lamont workers’ view 308–9
Pacific Ocean 274–7
presentation by Wilson (Ottawa, 1965) 328
projection onto a sphere 511, 517
Red Sea 272–3
Sykes conﬁrms ridge-ridge transform faults 386–403
Sykes tests Wilson’s proposition 389–96
transfer to a spherical surface (Morgan) 485
types of (Wilson) 266–8
Vine’s independent proposal 278–80
Vine’s mention of the idea to Wilson 262, 263, 264
Wilson’s 1965 paper 265–6
Wilson’s paper model 268
transform (half-shear) junctions (Wilson) 266
Transvaal, Africa 17
trenches, viewed as regions of tension 570
triple junctions 385, 528
evolution of 591–604
origins of the Great Magnetic Bight 584–91
rotation of plates about 517–18, 522–6
stability of different types 595–8
types of 595–8
tunnel vision, among Lamont workers 421–4
Turcotte, D. L. 466–7
Udintsev, G. B. 329
Umbgrove, J. H. F. 5, 11, 15
uniformitarianism 12, 15–18, 22, 27, 39, 41, 42–3, 45
United States Coast and Geodetic Survey (USCGS) 388
United States Geological Survey (USGS) 5, 234
improvements in the reversal timescale 345–50, 351–3
United States Office of Naval Research 109
United States Upper Mantle project 443
Utsu, T. 444, 575
Uyeda, S., self-reversing Haruna dacite 100–1
van Andel, S. I. 230
van Bemmelen, R. W. 189
van der Gracht, W. A. J.M. 155
van Hilten, D. 230
Veldkamp, J. 189
Verhoogen, J. 166
Vinkhuyzen Mountains 269–71
adaptation of Kunaratnam’s seamount program 107–8, 114, 115–16, 117
awareness of work on reversals 100–1
begins research at Cambridge (1962) 96–101

© in this web service Cambridge University Press www.cambridge.org
challenges of magnetic anomaly interpretation 104–8
computer modeling of the Carlsberg Ridge survey data 114–24
computer simulations of magnetic anomalies 104–5, 107–8
defense of the Vine–Matthews hypothesis 236–40
development of the Vine–Matthews hypothesis (1963) 114–24
discussions with Morgan 474
early interest in continental drift 91–3
enthusiasm for Hess’ ideas 93–6
fully accepts seafloor spreading 348–50
independently proposes ridge-ridge transform faults 278–80
influence of Bullard 99–101
influence of Matthews 99–101
internal reactions to his draft paper 122–3
interpretation of marine magnetic anomalies 96
learns of corrections to reversal timescale 345–50
letter to Hess about Princeton (1965) 255–7
magnetic anomalies and seamounts 105–6
Matthews becomes his supervisor 97–9
McKenzie letter about plate tectonics discovery 502–3
mention of transform fault idea to Wilson 262, 263, 264
on Vacquier’s criticisms 210
origin of the Great Magnetic Bight 586–90
overview of evidence supporting Vine–Matthews (1966) 375–86
presentation at the Goddard conference 414
rejection of self-reversal in magnetic anomalies 105–7
reversal of literature on marine magnetic anomalies 104–8
role as catalyst for Wilson 290–1
shared views with Matthews 91
significance of remanent magnetization 105
Vine–Matthews into a difficulty-free solution 375–86
undergraduate years at Cambridge 93–6
use of computers 98–100
use of interpretative modeling 65
view of paleomagnetic support for mobilism 96
work on Juan de Fuca spreading rate 345–50
work with Wilson and Hess 255, 259
work with Wilson in the northeast Pacific 245–6, 294–304
Vine–Matthews hypothesis 59–61, 62, 91, 604
bilaterality of magnetic anomalies 295–7, 301
defense and development (1964–1965) 236–40
development by Vine (1963) 114–24
differences from Morley’s hypothesis 134–6
difficulties raised 243–5
difficulty-free status (1966) 375–86
early responses to 202–16
empirical difficulties 235–6
evidence from the Juan de Fuca Ridge 297–9
geomagnetic field reversal premise 234
Heirtzler accepts 372–3
Heirtzler and Le Pichon’s alternative 249–55
Hess’s response 210–15
hypotheses which were similar to 62–3
initial difficulties 234–6
Irving’s response 215–16
McKenzie’s early response 459–60
mild support and criticism (early 1965) 241–5
Parker’s response 513
Pitman accepts 372–3
premise of geomagnetic field reversals 317–19
publication in Nature (1963) 124, 137–8
reasons for acceptance for publication 139–41
reasons for opposition at Lamont 418–27
rejection at Lamont 202, 249, 304–16
rejection by Heirtzler, Le Pichon and Talwani 245–6
remanence of ocean floor basalts 234
researchers who ignored it 241
response of Talwani 202
seafloor spreading premise 234–6
seafloor spreading rates based on 298–9
support from Canada 242–3
support from Hess 334
support from New Zealand 241–2
Sykes accepts 392
three premises 234–6
Vacquier’s criticism 209–10
Vine’s overview of supporting evidence (1966) 375–86
axial and flank magnetic anomalies 320
remanent magnetization of basalts 321
speculations on mantle convection 321–3
Vogt, P. 244–5
volcanic arcs 568–70
volcanoes, formation of 568–70
Ward, M. A. 227–30, 231
Wassberg, J. C. 499, 513, 514–15
Weiss, N. 499
Wegener, A. 18, 36, 37, 38, 45, 59, 88, 93, 155, 162, 270, 608, 610, 611
Wege, A. 18, 36, 37, 38, 45, 59, 88, 93, 155, 162, 270, 608, 610, 611
Wege, A. 18, 36, 37, 38, 45, 59, 88, 93, 155, 162, 270, 608, 610, 611
Wegmann, C. E. 31, 45, 270, 406–7, 466, 484
Wadati, K. 444
Wadati–Benioff zone 7, 9, 36, 443–6, 546–7
Ward, M. A. 227–30, 231
Wassberg, J. C. 413, 414, 461–2
Wegener, A. 18, 36, 37, 38, 45, 59, 88, 93, 155, 162, 270, 608, 610, 611
Wegner Fault 31, 48–9, 156, 157, 269–71
Wegmann, C. E. 31, 45, 270
Weiss, N. 499, 513, 514–15
Wells, J. W. 224–6, 230–1
Wadati–Benioff zone 7, 9, 36, 443–6, 546–7
Ward, M. A. 227–30, 231
Wassberg, J. C. 413, 414, 461–2
Wegener, A. 18, 36, 37, 38, 45, 59, 88, 93, 155, 162, 270, 608, 610, 611
Wegner Fault 31, 48–9, 156, 157, 269–71
Wegmann, C. E. 31, 45, 270
Weiss, N. 499, 513, 514–15
Wells, J. W. 224–6, 230–1
Index

674

Wensink, H. 254–5, 313, 353, 357–8, 360
Westoll, T. S. 163–4, 169–70, 227
White, G. W. 186
Whittard, W. F. 257
Williams, C. A. 459
Wilson, H. (Tuzo) 2
Wilson, J. A. 2
ability to generate new ideas 161–2
adoption of slow Earth expansion (1960) 33–5
aseismic ridges that branch off active ridges 151
at Madingley rise (1965) 258, 259
attack on paleomagnetic support for mobilism 34–5
attacks on continental drift 18–20
attacks on mantle convection 18–20
becomes a mobilist (1961) 36–46
becoming a globalist 4
comments on seafloor spreading concept 35, 39–42, 57
consequences of seafloor spreading 39–42
contact with Sykes 396
Coode’s ideas on faults 281–2
creation of island chains 152–5
defense of continental accretion 5–18
defense of contractionism 5–18, 21–31
description of transform faults 265–6
developing the idea of transform faults 261–8
development of continents 42–3
differences between transform faults and transcurrent faults 268
difficulties with seafloor spreading 41–2
difficulty of the circum-Antarctic ridge 275–7
direction of motion in transcurrent faults 268
direction of motion in transform faults 268
discussion of the Pacific and seafloor spreading 160–1
eyearly life and career 2–5
East Pacific Rise 335, 336–7
explanation for large horizontal movements 44–5
explanation of mid-ocean ridges 23–5
explanation of oceanic seafloor features 156–7
first paper on transform faults 245–6
formation of continental shelves 11
global perspective on transform faults 264
honors and awards 5
hot spots within the mantle 152–5
identification of transform faults around the world 269–78
influence of Jeffreys 3, 18, 25
influence of paleomagnetic findings 38–9
island age and distance from ridge 149–51
island arcs and seafloor spreading 43–4
island arcs origin and evolution 41
lack of Pre-Cretaceous seafloor sediments 43–4
lecture invitation from Runcorn 257–8
limitations of contraction theory 43–4
mantle convection and seafloor spreading 46
mantle convection patterns 49
matches the Cabot and Great Glen faults 46–50
Menard’s attack on his oceanic islands work 198–200
migrating ocean ridges theory 41–2, 46, 57, 60
mobilism and mountain belt formation 44–5
models of transform and transcurrent faults 268
on paleomagnetism’s support for mobilism 25–7, 27–31
on polar wandering 25–9
on the paleomagnetic case for mobilism 45–6
origin of mid-ocean ridges 44
origin of the Hawaiian Islands 152–5
origin of transform Earth expansion 33–5
paper on transform faults (1965) 265–8
plates on the Earth’s surface 265–6
predicted ridge in the Labrador Sea 242, 243
presentation and discussion (Ottawa meeting, 1965), 328–33
presentation of transform faults (Ottawa, 1965) 328
proposed down-warping of the Pacific seafloor 155
recognition of his work 5
reconciling orogenesis and mobilism 39
reconstruction of continents in the mid-Mesozoic 161
rejection of contractionism (1960) 33–5
rejection of mobilism (1959) 21–31
requirements for a tectonic theory 42–6
role of Vine and Coode as catalysts 290–1
search for evidence of seafloor spreading 148–62
search for further support for mobilism 148–62
sedimentary rock conversion to metamorphic rocks 43–4
speculation about the ocean ridge system 157–9
study of oceanic islands 148–62
summary papers 155–6
tectonic disjuncts 45
theory of island arc formation 5–18
theory of mountain formation 5–18
transcurrent faults 30–1
transcurrent faults and expansion 34
transform (half-shear) junctions 266
transform faults 44, 50, 265–8, 308–9, 511, 513–14, 517
transform faults and continental drift 267–8
travels in Europe (1965) 257–9
types of plate border 265–6
types of transform fault 266–8
uniformitarianism 12, 15–18, 22, 27, 39, 41, 42–3, 45
Index

Vine's mention of transform fault idea 279–80
work with Vine and Hess 255, 259
work with Vine in the northeast Pacific 245–6, 294–304
Wilson, R. L. 133–4, 318–19
Wise, D. U. 382
Woods Hole Oceanographic Institute (WHOI) 214, 244, 386
Woollard, G. P. 3
Wordie, J. 3

World Wide Standardized Seismograph Network (WWSSN) 449
Worzel, J. Lamar 71, 164, 168, 185, 239, 246, 414–15, 422, 484, 570
Yamaska Mountains, Canada 129
Zed patterns 581–4
Zeitz, I. 130
Zijderveld, J. D. A. 189