The Road to Maxwell’s Demon
Conceptual Foundations of Statistical Mechanics

Time asymmetric phenomena are successfully predicted by statistical mechanics. Yet the foundations of this theory are surprisingly shaky. Its explanation for the ease of mixing milk with coffee is incomplete, and even implies that un-mixing them should be just as easy. In this book the authors develop a new conceptual foundation for statistical mechanics that addresses this difficulty. Explaining the notions of macrostates, probability, measurement, memory, and the arrow of time in statistical mechanics, they reach the startling conclusion that Maxwell’s Demon, the famous perpetuum mobile, is consistent with the fundamental physical laws.

Mathematical treatments are avoided where possible, and instead the authors use novel diagrams to illustrate the text. This is a fascinating book for graduate students and researchers interested in the foundations and philosophy of physics.

Meir Hemmo is an Associate Professor in the Department of Philosophy, University of Haifa. He has written on the foundations of quantum mechanics and statistical mechanics.

Orly R. Shenker is a Senior Lecturer at the Program for the History and Philosophy of Science, The Hebrew University of Jerusalem. She has written on the foundations of classical and quantum statistical mechanics and on the rationality of science.
The Road to Maxwell’s Demon
Conceptual Foundations of Statistical Mechanics

MEIR HEMMO
University of Haifa

ORLY R. SHENKER
The Hebrew University of Jerusalem
To my wife Tami, and to my children Alma, Avigail, and Shaul – M. H.
For my daughter Marie – may your trajectory, like that of Maxwell’s Demon, evolve through growing potentialities and increasingly meaningful experiences – O. S.
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>16</td>
</tr>
<tr>
<td>2.1 The experience of asymmetry in time</td>
<td>16</td>
</tr>
<tr>
<td>2.2 The Law of Conservation of Energy</td>
<td>18</td>
</tr>
<tr>
<td>2.3 The Law of Approach to Equilibrium</td>
<td>22</td>
</tr>
<tr>
<td>2.4 The Second Law of Thermodynamics</td>
<td>25</td>
</tr>
<tr>
<td>2.5 The status of the laws of thermodynamics</td>
<td>38</td>
</tr>
<tr>
<td>Classical mechanics</td>
<td>40</td>
</tr>
<tr>
<td>3.1 The fundamental theory of the world</td>
<td>40</td>
</tr>
<tr>
<td>3.2 Introducing classical mechanics</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Mechanical states</td>
<td>43</td>
</tr>
<tr>
<td>3.4 Time evolution of mechanical states</td>
<td>49</td>
</tr>
<tr>
<td>3.5 Thermodynamic magnitudes</td>
<td>51</td>
</tr>
<tr>
<td>3.6 A mechanical no-go theorem</td>
<td>56</td>
</tr>
<tr>
<td>3.7 The ergodic approach</td>
<td>62</td>
</tr>
<tr>
<td>3.8 Conclusion</td>
<td>71</td>
</tr>
<tr>
<td>Time</td>
<td>72</td>
</tr>
<tr>
<td>4.1 Introduction: why mechanics cannot underwrite thermodynamics</td>
<td>72</td>
</tr>
<tr>
<td>4.2 Classical kinematics</td>
<td>73</td>
</tr>
<tr>
<td>4.3 The direction of time and the direction of velocity in time</td>
<td>74</td>
</tr>
<tr>
<td>4.4 The description of mechanical states</td>
<td>76</td>
</tr>
<tr>
<td>4.5 Velocity reversal</td>
<td>80</td>
</tr>
</tbody>
</table>
4.6 Retrodiction
4.7 Time reversal and time-reversal invariance
4.8 Why the time-reversal invariance of classical mechanics matters

5 Macrostates
5.1 The physical nature of macrostates
5.2 How do macrostates come about?
5.3 Explaining thermodynamics with macrostates
5.4 The dynamics of macrostates
5.5 The physical origin of thermodynamic macrostates
5.6 Boltzmann’s macrostates
5.7 Maxwell–Boltzmann distribution
5.8 The observer in statistical mechanics
5.9 Counterfactual observers

6 Probability
6.1 Introduction
6.2 Probability in statistical mechanics
6.3 Choice of measure in statistical mechanics
6.4 Measure of a macrostate and its probability
6.5 Transition probabilities without blobs
6.6 Dependence on observed history?
6.7 The spin echo experiments
6.8 Robustness of transition probabilities
6.9 No probability over initial conditions

7 Entropy
7.1 Introduction
7.2 Entropy
7.3 The distinction between entropy and probability
7.4 Equilibrium in statistical mechanics
7.5 Law of Approach to Equilibrium
7.6 Second Law of Thermodynamics
7.7 Boltzmann’s H-theorem
7.8 Loschmidt’s reversibility objection
7.9 Poincaré’s recurrence theorem
7.10 Boltzmann’s combinatorial argument
7.11 Back to Boltzmann’s equation: Lanford’s theorem
7.12 Conclusion
Contents

8 Typicality 182
 8.1 Introduction 182
 8.2 The explanatory arrow in statistical mechanics 183
 8.3 Typicality 184
 8.4 Are there natural measures? 186
 8.5 Typical initial conditions 187
 8.6 Measure-1 theorems and typicality 189
 8.7 Conclusion 191

9 Measurement 192
 9.1 Introduction 192
 9.2 What is measurement in classical mechanics? 193
 9.3 Collapse in classical measurement 200
 9.4 State preparation 202
 9.5 The shadows approach 206
 9.6 Entropy 207
 9.7 Status of the observer 209

10 The past 212
 10.1 Introduction 212
 10.2 The problem of retrodiction 213
 10.3 The Past Hypothesis: memory and measurement 216
 10.4 The Reliability Hypothesis 219
 10.5 Past low entropy hypothesis 222
 10.6 Remembering the future 224
 10.7 Problem of initial improbable state 226
 10.8 The dynamics of the Past Hypothesis 228
 10.9 Local and global Past Hypotheses 229
 10.10 Past Hypothesis and physics of memory 230
 10.11 Memory in a time-reversed universe 232

11 Gibbs 234
 11.1 Introduction 234
 11.2 The Gibbsian method in equilibrium 235
 11.3 Gibbsian method in terms of blobs and macrostates 238
 11.4 Gibbsian equilibrium probability distributions 240
 11.5 The approach to equilibrium 241
x

Contents

12 Erasure
12.1 Introduction 246
12.2 Why there is no microscopic erasure 247
12.3 What is a macroscopic erasure? 248
12.4 Necessary and sufficient conditions for erasure 251
12.5 Logic and entropy 254
12.6 Another logically irreversible operation 255
12.7 Logic and entropy: a model 257
12.8 What does erasure erase? 268
12.9 Conclusion 268

13 Maxwell's Demon
13.1 Thermodynamic and statistical mechanical demons 270
13.2 Szilard's insight 273
13.3 Entropy reduction: measurement 273
13.4 Efficiency and predictability 278
13.5 Completing the cycle of operation: erasure 280
13.6 The Liberal Stance 284
13.7 Conclusion 286

Appendix A Szilard's engine 288

Appendix B Quantum mechanics 300
B.1 Albert's approach 301
B.2 Bohmian mechanics 307
B.3 A quantum mechanical Maxwellian Demon 309

References 319
Index 326
This book is a product of more than a decade of joint work during which we have greatly benefited from discussions with many people.

First and foremost, the approach we put forward here has been greatly influenced by David Albert’s groundbreaking book from 2000 *Time and Chance*. Albert’s way of thinking about Maxwell’s Demon has made us realize that the foundations of statistical mechanics are in need of clarification, refinement and sometimes even revision, and this realization has led us to develop many of our ideas that come up in this book. Although we agree with Albert on some important matters – such as the radical idea that Maxwell’s Demon is consistent with statistical mechanics – our approach substantially differs from his on a number of issues. However, the need to explain our differing opinions has greatly helped us sharpen our thoughts on the topics we address in this book.

Many conversations with the late Itamar Pitowsky over more than two decades have been extremely valuable to us. Itamar’s open mind to new ideas and his constant encouragement throughout our research kept us on the right track.

It is a special pleasure to thank the members of the philosophy of physics group which meets monthly as it has for several years at the Edelstein Centre for the History and Philosophy of Science at the Hebrew University of Jerusalem: in particular we thank Yemima Ben-Menahem, Alon Drori, Daniel Rohrlich, Lev Vaidman, Boaz Tamir, and Simcha Rozen. We received valuable comments from the participants in two series of workshops in which we have presented some of our ideas: New Directions in the Foundations of Physics organized by Jeff Bub, Rob Rynasiewicz and James Mattingly, and the meetings in Sesto, Italy organized by GianCarlo Ghirardi, Nino Zanghi, Shelly Goldstein and Detlef Dürr; and from the participants in two international meetings of
the Bar Hillel Colloquium for the History, Philosophy and Sociology of Science held at the Van Leer Institute in Jerusalem: in 2000, on the subject of foundations of statistical mechanics, and in 2008, on the subject of probability in physics, in honor of Itamar Pitowsky. We have also benefited from discussions and written exchanges with (in alphabetic order) Frank Arntzenius, Joseph Berkovitz, Jeff Bub, Craig Callender, Shelly Goldstein, Amit Hagar, Carl Hoefer, the late Rolf Landauer, Barry Loewer, Tim Maudlin, Wayne Myrvold and Jos Uffink. We also thank the Cambridge University Press editorial team and especially Lindsay Nightingale for her thorough copy editing.

This research has been supported by the Israel Science Foundation, grant numbers 240/06 and 713/10, and by the German-Israel Foundation, grant number 1-1054-112.5/2009.

Meir Hemmo, Orly Shenker