Contents

Preface page xiii

Introduction 1

PART I WEAK AND STRONG SOLUTIONS

Overview of Part I 17

1 Function spaces 19
 1.1 Domain of the flow 19
 1.2 Derivatives 20
 1.3 Spaces of continuous and differentiable functions 21
 1.4 Lebesgue spaces 23
 1.5 Fourier expansions 26
 1.6 Sobolev spaces $W^{k,p}$ 28
 1.7 Sobolev spaces H^s with $s \geq 0$ 29
 1.8 Dual spaces 37
 1.9 Bochner spaces 38

Notes 44
Exercises 44

2 The Helmholtz–Weyl decomposition 47
 2.1 The Helmholtz–Weyl decomposition on the torus 48
 2.2 The Helmholtz–Weyl decomposition in $\Omega \subset \mathbb{R}^3$ 52
 2.3 The Stokes operator 57
 2.4 The Helmholtz–Weyl decomposition of L^q 63

Notes 66
Exercises 68
Contents

3 Weak formulation 70
 3.1 Weak formulation 70
 3.2 Basic properties of weak solutions 73
 3.3 Alternative spaces of test functions 79
 3.4 Equivalent weak formulation 82
 3.5 Uniqueness of weak solutions in dimension two 84
 Notes 86
 Exercises 87

4 Existence of weak solutions 89
 4.1 The Galerkin method 89
 4.2 Existence of weak solutions on bounded domains 92
 4.3 The strong energy inequality 98
 4.4 Existence of weak solutions on the whole space 101
 4.5 The Aubin–Lions Lemma 103
 Notes 107
 Exercises 108

5 The pressure 111
 5.1 Solving for the pressure on \mathbb{T}^3 and \mathbb{R}^3 112
 5.2 Distributional solutions in the absence of boundaries 115
 5.3 Additional estimates on weak solutions 117
 5.4 Pressure in a bounded domain 122
 5.5 Applications of pressure estimates 124
 Notes 125
 Exercises 125

6 Existence of strong solutions 127
 6.1 General properties of strong solutions 128
 6.2 Local existence of strong solutions 133
 6.3 Weak–strong uniqueness and blowup 137
 6.4 Global existence for small data in V 140
 6.5 Global strong solutions in the two-dimensional case 143
 6.6 Strong solutions on the whole space 144
 Notes 145
 Exercises 146
Contents

7 **Regularity of strong solutions** 148
 7.1 Regularity in space 149
 7.2 Regularity in space–time 153
 Notes 155
 Exercises 156

8 **Epochs of regularity and Serrin’s condition** 158
 8.1 The putative set of singular times 158
 8.2 The box-counting and Hausdorff dimensions 162
 8.3 Epochs of regularity 166
 8.4 More bounds on weak solutions 169
 8.5 Serrin’s condition 170
 8.6 Epochs of regularity on the whole space 175
 Notes 176
 Exercises 178

9 **Robustness of regularity and convergence of Galerkin approximations** 180
 9.1 Robustness of strong solutions 180
 9.2 Convergence of Galerkin approximations 184
 Notes 188
 Exercises 190

10 **Local existence and uniqueness in $\dot{H}^{1/2}$** 192
 10.1 Critical spaces 192
 10.2 Fractional Sobolev spaces and criticality of $\dot{H}^{1/2}$ 194
 10.3 Local existence for initial data in $\dot{H}^{1/2}$ 195
 10.4 An auxiliary ODE lemma 201
 Notes 202
 Exercises 204

11 **Local existence and uniqueness in L^3** 206
 11.1 Preliminaries 207
 11.2 Local existence in L^3 208
 11.3 A proof of Lemma 11.2 on \mathbb{T}^3 215
 Notes 216
 Exercises 217
PART II LOCAL AND PARTIAL REGULARITY

Overview of Part II

12 Vorticity

12.1 The vorticity equation

12.2 The Biot–Savart Law

12.3 The Beale–Kato–Majda blowup criterion

12.4 The vorticity in two dimensions

12.5 A local version of the Biot–Savart Law

Notes

Exercises

13 The Serrin condition for local regularity

13.1 Local weak solutions

13.2 Main auxiliary theorem: a smallness condition

13.3 The case \(\frac{2}{q} + \frac{3}{q} < 1 \)

13.4 The case \(\frac{2}{q} + \frac{3}{q} = 1 \)

13.5 Local Hölder regularity in time for spatially smooth \(u \)

Notes

Exercise

14 The local energy inequality

14.1 Formal derivation of the local energy inequality

14.2 The Leray regularisation

14.3 Rigorous derivation of the local energy inequality

14.4 Derivation of an alternative local energy inequality

14.5 Derivation of the strong energy inequality on \(\mathbb{R}^3 \)

Notes

Exercises

15 Partial regularity I: \(\dim_b(S) \leq 5/3 \)

15.1 Scale-invariant quantities

15.2 Outline of the proof

15.3 A first local regularity theorem in terms of \(u \) and \(p \)

15.4 Partial regularity I: \(\dim_b(S) \leq 5/3 \)

15.5 Lemmas for the first partial regularity theorem

Notes

Exercises
Contents

16 Partial regularity II: \(\dim_H(S) \leq 1 \) 315
 16.1 Outline of the proof 316
 16.2 A second local regularity theorem 321
 16.3 Partial regularity II: \(\mathcal{H}^1(S) = 0 \) 326
 16.4 The Serrin condition revisited: \(u \in L^\infty_t L^3_x \) 329
 16.5 Lemmas for the second partial regularity theorem 333
 Notes 338
 Exercises 338

17 Lagrangian trajectories 340
 17.1 Lagrangian trajectories for classical solutions 342
 17.2 Lagrangian uniqueness for \(u_0 \in H \cap \dot{H}^{1/2} \) 343
 17.3 Existence of a Lagrangian flow map for weak solutions 352
 17.4 Lagrangian a.e. uniqueness for suitable weak solutions 358
 17.5 Proof of the inequality (17.5) 363
 17.6 Proof of the borderline Sobolev embedding inequality 366
 Notes 367
 Exercises 368

Appendix A Functional analysis: miscellaneous results 369
 A.1 \(L^p \) spaces 369
 A.2 Absolute continuity 370
 A.3 Convolution and mollification 371
 A.4 Weak \(L^p \) spaces 373
 A.5 Weak and weak-* convergence and compactness 374
 A.6 Gronwall's Lemma 377

Appendix B Calderón–Zygmund Theory 378
 B.1 Calderón–Zygmund decompositions 378
 B.2 The Calderón–Zygmund Theorem 380
 B.3 Riesz transforms 384

Appendix C Elliptic equations 387
 C.1 Harmonic and weakly harmonic functions 387
 C.2 The Laplacian 388

Appendix D Estimates for the heat equation 393
 D.1 Existence, uniqueness, and regularity 393
 D.2 Estimates for \(e^{\Delta t} \omega_0 \) 394
 D.3 Estimates for \((\partial_t - \Delta)^{-1} f \) 396
Contents

D.4 Higher regularity – Hölder estimates 400
D.5 Maximal regularity for the heat equation 403

Appendix E A measurable-selection theorem 407

Solutions to exercises 412
References 457
Index 467