absence of boundaries, 2
absolute continuity, 370
Agmon’s inequality, 36, 45, 260
analyticity, 156
approximation to the identity, 371
Arzelà–Ascoli Theorem, 23
Aubin–Lions Lemma, 103
full version, 107
simple version, 91, 104
Banach algebra, 36
Banach–Alaoglu Theorem, 376
Beale–Kato–Majda criterion, 228
Biot–Savart Law
global version
derivation, 227
estimating u given ω, 227
local version
derivation, 231
estimating u given ω, 233
blowup rate
for a simple ODE, 218
in H^1, 139
in L^2, 218
BMO$^{-1}$, 203
Bochner integral, definition, 39
Bochner spaces, 38
box-counting dimension
and Lebesgue measure, 166
bounds the Hausdorff dimension, 166
definition (coverings), 162
definition (disjoint balls), 162
of singular times T, 166
of space–time singular set S, 302
the Burgers equation, 10, 11
C^0, 22
$C^{0,\gamma}$, 22
C_∞, 22
C^k, 22
$C^{k,\gamma}$, 22
Calderón–Zygmund decompositions, 378
Calderón–Zygmund Theorem, 380
alternative form (condition on $|\nabla K|$), 383
centred parabolic cylinder Q^*, 240
Chebyshev inequality (generalised), 373
CKN, 279
compatibility conditions, 154
continuation of strong solutions, 229
continuous and differentiable functions, 22–23
critical spaces, 8, 192, 203, see also BMO$^{-1}$,
$H^{1/2}$, and L^3
curl, 20
tegration by parts, 225, 237
δ_{ij}, 21
dimension
based on parabolic cylinders, 314
box-counting, see box-counting dimension
Hausdorff, see Hausdorff dimension
Minkowski, 162, 359n3, 368
Dirichlet boundary condition, 2, 19
divergence, 20
divergence-free flows, 3
are volume preserving, 342
D_ν, 70
\tilde{D}_ν, 79
∂u for weak solutions
$\in L^{4/3}(0, T; H^{-1}(\mathbb{T}^3))$, 97
$\in L^{4/3}(0, T; V^*)$, 76
$\in L^{4/3}(\epsilon, T; L^{6/5}(\mathbb{T}^3))$, 118
$\in L^6(0, T; L^1(\mathbb{G}))$, 123
dual space, 37
of H_0^s, 37
of L^p, 37
of $L^p(0, T; X)$, 41
duality argument, 380
Duhamel principle, 146
dynamic viscosity, 5
e3r, 196
Einstein summation convention, 4
embeddings
for $H^{3/2}$ (borderline), 349, 366
$H^s \subset H^0, s > 3/2, 36$
$H^s \subset L^{3/(3-2s)}, 0 \leq s < 3/2, 36$
$L^{3/(3-2s)} \subset H^s, s \geq 0, 38$
$W^{1,p} \subset C^{0,1-3/p}, p > 3, 29$
$W^{1,p} \subset L^{3p/(3-p)}, 1 \leq p < 3, 28$
energy equality, 9
for strong solutions, 131
energy inequality, see strong energy inequality
ePOCHS OF REGULARITY
bounded domains, 167
whole space, 175
ϵ_{ijl} (Levi–Civita tensor), 20
Euler equations, 2, 189, 222, 229
Fourier series, 26
square sums converge in L^p, 27
Fourier transform, 32
Friedrich’s inequality, 109
Fundamental Theorem of Calculus, 370
$G(\mathbb{R}^3), 51$
$G(T^3), 49$
$G(\Omega), 55$
$G_0, 64$
Gagliardo–Nirenberg inequality, 157
Galerkin approximations, 90
convergence for strong solutions, 184
equation, 90
method, 89
Gevrey regularity, 156
global existence for small data
in “fake $H^{1/2}(\mathbb{R}^3)$”, 141
in $H^{1/2}(T^3)$, 200, 202
in H^1 (bounded domains), 140
in $L^1, 213, 218$
Gronwall Lemmas, 377
$H(\mathbb{R}^3), 51$
$H(T^3), 48$
$H(\Omega), 52$
$H^{1/2}$
global existence for small data, 200
is critical, 195
$H^s(\mathbb{R}^3), 33$
$H^s(T^3), 31$
$H^s(\mathbb{R}^3), 33$
$H^s, s > 3/2, is a Banach algebra, 36$
$H_0, 63$
Hahn–Banach Theorem, 375
harmonic functions, 387
mean value theorems, 387
Hausdorff dimension
bounded by box-counting dimension, 166
definition, 165
of singular times T, 168
of space–time singular set S, 326
Hausdorff measure
definition, 165
parabolic variant, 326
heat equation
backwards uniqueness, 333
estimates in terms of forcing f, 397, 399
estimates in terms of initial data, 395
explicit solution, 394
local regularity results, 400
maximal regularity, 117, 126, 403, 405
solutions continuous at $t = 0$, 395
unique continuation, 333
uniqueness, 393
Helmholtz–Weyl decomposition
of $L^2(\mathbb{T}^3)$, 49
of $L^2(\Omega), 55$
of $L^2(T^3), 51$
of $L^p, 64$
of $\mathcal{L}(\mathbb{R}^3), 116, 125$
Hölder’s inequality, 24
three-term version, 25
incompressibility, 3
interpolation inequality
for CKN, 304
in L^p, 26
in Sobolev spaces, 34, 35, 45, 194
Kato’s inequality, 155
Index

\[L^2(T^3), 31 \]
\[L^3 \]
 - global existence for small data, 213
 - is critical, 206
 - local existence, 209, 213
 - interpolation inequality, 26
 - nested on bounded domains, 25
 - \(L^p(0; T; X) \)
 - completeness, 39
 - definition, 39
 - dense subspaces, 40
 - dual space, 41
 - \(L^p,\infty \)
 - \(L^\infty \) implies local regularity, 242, 329
 - Ladyzhenskaya inequality, 85, 88
 - Lagrangian flow map
 - construction, 354
 - definition, 352
 - is volume preserving, 357
 - Lagrangian trajectories, 4, 340
 - for classical solutions, 342
 - for suitable weak solutions, 358
 - are unique a.e., 362
 - avoid the space–time singular set, 361
 - for \(u_0 \in H^{1/2} \), 344
 - existence, 346
 - uniqueness, 349
 - for weak solutions, 352
 - integral equation, 344
 - \(A^s \) (fractional derivative), 32
 - Laplace operator/Laplacian, 388
 - Lebesgue Differentiation Theorem, 369
 - Lebesgue measurable, 23
 - Lebesgue space, see \(L^p \)
 - Leibniz formula, 21
 - Leray projector
 - bounded on \(L^p \), 64, 125
 - on \(\mathbb{T}^3/\mathbb{R}^3 \)
 - commutes with derivatives, 52
 - definition, 51
 - on \(\Omega \), 56
 - Leray–Hopf weak solutions
 - are eventually strong, 159
 - are smooth on \(\mathbb{R} \times \Omega \), 161
 - definition, 101
 - Hölder regularity in time, 260
 - Levi–Civita tensor, 20
 - Liouville’s formula, 343, 368
 - local energy inequality
 - alternate form, 272
 - formal derivation, 264
 - on bounded domains, 277
 - proof on \(T^3 \), 268
 - local existence
 - in BMO\(^{-1} \), 203
 - in \(H^1 \) (bounded domains), 134
 - in \(H^1(\mathbb{R}^3) \), 144
 - in \(H^{1/2}(T^3) \), 196, 200
 - in \(L^3 \), 209, 213
 - local regularity theorem
 - in terms of \(Vu \), 321
 - in terms of \(\|v\|^2 + |v|^3/2 \), 300
 - under Serrin’s condition, 241
 - local weak solutions, 238
 - Marcinkiewicz Interpolation Theorem, 374
 - maximal regularity
 - heat equation, 117, 126, 403, 405
 - Stokes equations, 122
 - maximum principle
 - for viscous Burgers equation, 12
 - measurable selection theorem, 355, 407
 - Mihlin/Hörmander multiplier theorem, 404
 - mild solutions, 146
 - Millennium Problem, 3
 - Minkowski dimension, 162, 359n3, 368
 - Minkowski’s inequality, 369
 - mollification, 372
 - momentum conservation, 3
 - Morrey’s Theorem, 29
 - multi-index notation, 21
 - multi-valued function, 407
 - Navier–Stokes equations
 - derivation, 3
 - distributional formulation, 115, 120, 124
 - in 2D
 - global strong solutions, 143, 231
 - uniqueness of weak solutions, 85
 - Leray regularisation, 263, 265
 - energy tail estimates, 274
 - existence of solutions, 266
 - strong solutions, see strong solutions
 - vorticity formulation, see vorticity equation
 - weak formulation
 - alternative form, 82
 - primary definition, 73

© in this web service Cambridge University Press
www.cambridge.org
nonlinear term \((u \cdot \nabla)u\), 10

estimate in \(H^{1/2}\), 363

estimate in \(H^2\), 148

\(\in L^{6/5}(0, T; L^{6/5})\), 74

Kato estimate, 155

orthogonality relation, 71

\(P_n\) (projection onto eigenfunctions)
deinition, 89

is bounded on \(H^s\), 108

is symmetric, 90

parabolic cylinder \(Q_r\), 280
centred \(Q^*_r\), 240

parabolic Hausdorff measure, 326

particle trajectories, see Lagrangian trajectories

periodic boundary conditions, 2, 20

Pettis’s Theorem, 39

Poincaré inequality, 29

Poisson equation, 388

pressure

in terms of velocity, 111

local estimates, 308, 334

physical meaning, 5

space estimates (no boundaries), 112

space–time estimates (bounded domain), 122

space–time estimates (no boundaries), 113

\(Q_r\) (parabolic cylinder), 280

\(Q^*_r\) (centred parabolic cylinder), 240

\(R\) (regular times), 160

regular points (of a weak solution), 281

regular times \(T\), 160

Rellich–Kondrachov Theorem, 29

rescaling, 7

and critical spaces, 8, 192

effect on time of regularity, 8

to change viscosity, 7

Riesz transforms, 384

\(\mathcal{S}\) (Schwartz functions), 22

\(\mathcal{S}'\) (tempered distributions), 23

Schwartz functions \(\mathcal{S}\), 22

Serrin’s condition, 170

implies local smoothness, 241

implies smoothness, 173, 329

implies uniqueness, 174

Serrin’s example, 87, 239

singular points \(S\) (of a weak solution), 281

singular times \(T\), 160

and the space–time singular set \(S\), 327

are compact, 160

\(\dim_H(\mathcal{T}) \leq 1/2\), 166

\(J^{1/2}(\mathcal{T} = 0), 177, 178\)

\(\mathcal{H}^{1/2}(\mathcal{T}) = 0, 168\)

small data

in ‘fake \(H^{1/2}(\mathbb{R}^3)\)’, 141

in \(H^{1/2}(\Omega^3)\), 200, 202

in \(H^1(\Omega^3)\), 140

in \(L^3\), 213, 218

Sobolev embeddings, 28, 36

Sobolev spaces

extension theorem, 34

\(H^s\), 29

interpolation inequality, 34, 35, 45, 194

on \(\mathbb{R}^3\), 32

on \(\Omega^3\), 30

on \(\Omega\), 34

\(W^{k,p}\), 28

space–time singular set \(S\)

and the set of singular times \(T\), 327

box-counting dimension, 302

has zero Lebesgue measure, 304

Hausdorff dimension, 326

is bounded, 301

splitting method for local existence, 197, 209

Stokes equations, 58, 69

maximal regularity, 122

Stokes operator, 57

and the Laplacian, 58

eigenfunctions, 60, 69

eigenvalues, 69

fractional powers, 62–63

regularity estimates, 59

stress tensor, 4

strong energy inequality

on bounded domains, 98

on \(\mathbb{R}^3\), 273

strong solutions

are smooth in space, 151

are smooth in space–time, 154

as test functions, 132

continuation, 229

definition, 127

Galerkin approximations converge, 184

global existence for small data, 140, 141

global existence in 2D, 143

local existence (bounded domains), 134

local existence \((\mathbb{R}^3)\), 144
Index

no blowup if $\nabla u \in L^1(0, T; L^{\infty})$, 155, 157
no blowup if $\omega \in L^1(0, T; L^{\infty})$, 229
rate of blowup, 139
robustness under perturbation, 180
satisfy the energy equation, 131
satisfy the equation in $L^2(0, T; L^2)$, 130
uniqueness in class of weak solutions, 137
with $u_0 \in H^k$, 149
strongly measurable, 38
sublinear, 374
suitable weak solutions, 281
first local regularity theorem, 300
second local regularity theorem, 321
summation convention, 4
T (singular times), see singular times
$T_{jk} = \partial_j \partial_k (\cdots)$, 385
bounded from L^p to L^q, 385
tempered distributions, 23, 23
vortex stretching, 230
vorticity, 224, see also Biot–Savart Law
in two dimensions, 230
vorticity equation, 225
and weak solutions, 225
in two dimensions, 230
$W^{1, p}$, 28
$W_0^{1, p}$, 28
weak compactness, 376
weak convergence, 375
weak derivative, 28
weak L^p spaces, 373
weak (p, q), 374
weak solutions
and initial data, 100
and the vorticity equation, 225
as distributional solutions, 115, 120, 124
concatenation, 110
continuous into V^*, 76
definition, 73
equivalence on \mathbb{R}^3, 102
existence on bounded domains, 92
Leray–Hopf, see Leray–Hopf weak solutions
local definition, 238
of Leray regularisation, 266
strong energy inequality, 98, 273
suitable, 281
$u \in L^1(0, T; L^{\infty})$, 169
$u \in L^{2/3}(0, T; D(A))$, 169
$u \in L^r(0, T; L^s)$, $2/r + 3/s \leq 3/2$, 74
unique in 2D, 84
weakly continuous into L^2, 78
weak-$*$ convergence, 376
weak time derivative
definition and properties, 41
embedding results, 43, 259
weak–strong uniqueness, 137
weakly divergence-free functions, 48
trace theorem, 53
weakly measurable, 38
Weyl’s Lemma, 388
Young’s inequality, 24
Young’s inequality for convolutions, 371
using weak solutions, 374