THE PRINCIPLE OF THE COMMON CAUSE

The Common Cause Principle says that every correlation is either due to a direct causal effect linking the correlated entities, or is brought about by a third factor, a so-called common cause. The principle is of central importance in the philosophy of science, especially in causal explanation, causal modeling, and in the foundations of quantum physics.

Written for philosophers of science, physicists and statisticians, this book contributes to the debate over the validity of the Common Cause Principle, by proving results that bring to the surface the nature of explanation by common causes. It provides a technical and mathematically rigorous examination of the notion of common cause, providing an analysis not only in terms of classical probability measure spaces, which is typical in the available literature, but also in quantum probability theory. The authors provide numerous open problems to further the debate and encourage future research in this field.

GÁBOR HOFER-SZABÓ is a Senior Research Fellow in the Institute of Philosophy, Research Center for Humanities at the Hungarian Academy of Sciences. His main fields of research are the foundations of quantum mechanics, interpretations of probability, and probabilistic causality.

MIKLÓS RÉDEI is Professor in the Department of Philosophy, Logic and Methodology of Science at the London School of Economics and Political Science. His research interests are philosophy and the foundations of physics.

LÁSZLÓ E. SZABÓ is Professor in the Department of Logic, Institute of Philosophy at Eötvös Loránd University, Budapest. His research focuses on the philosophy of space and time, causality, the EPR–Bell problem, the interpretation of probability, and a physicalist account of mathematics.
THE PRINCIPLE OF THE
COMMON CAUSE

GÁBOR HOFER-SZABÓ
Research Center for the Humanities, Budapest

MIKLÓS RÉDEI
London School of Economics and Political Science

LÁSZLÓ E. SZABÓ
Eötvös Loránd University, Budapest
Contents

Preface
page vii

1 Introduction and overview
1

2 The Common Cause Principle
2.1 Reichenbach’s notion of common cause 11
2.2 Reichenbach’s Common Cause Principle 13
2.3 Notes and bibliographic remarks 17

3 Common cause extendability of probability spaces
3.1 Common cause (in)completeness and extendability 18
3.2 Classical probability spaces are common cause extendable 24
3.3 Notes and bibliographic remarks 28

4 Causally closed probability theories
4.1 Causal closedness and common cause closedness 29
4.2 Atomicity and common cause closedness 34
4.3 Notes and bibliographic remarks 50

5 Common common causes
5.1 Common causes and common common causes 51
5.2 Common causes are not common common causes 52
5.3 Notes and bibliographic remarks 59

6 Common cause extendability of nonclassical probability spaces
6.1 Quantum probability spaces are common cause extendable 62
6.2 Atomicity and common cause closedness in nonclassical probability theory 69
6.3 Notes and bibliographic remarks 79
Contents

7 Reichenbachian common cause systems 80
 7.1 Common cause partitions 80
 7.2 Existence and properties of common cause systems 82
 7.3 Notes and bibliographic remarks 95

8 Causal closedness of quantum field theory 97
 8.1 The Common Cause Principle in algebraic relativistic quantum field theory 97
 8.2 The Common Cause Principle in lattice quantum field theory 116
 8.3 Notes and bibliographic remarks 132

9 Reichenbach's Common Cause Principle and EPR correlations 134
 9.1 Einstein-Podolsky-Rosen (EPR) correlations 134
 9.2 Local and nonconspiratorial common cause systems 139
 9.3 Notes and bibliographic remarks 171

10 Where do we stand? 173

Appendix 180
 A.1 Boolean algebras 180
 A.2 Classical probability measure spaces 182
 A.3 Measure theoretic atomicity 184
 A.4 Orthocomplemented lattices 185
 A.5 von Neumann algebras 188

References 193

Index 201
This book summarizes and develops further in some respects the results of research the authors have undertaken in the past several years on the problem of explaining probabilistic correlations in terms of (Reichenbachian) Common Causes. The results have been published by the authors of this book in a number of papers, partly in collaborations with each other and with other colleagues; these papers form the basis of the present book. We wish to thank especially Balázs Gyenis, Zalán Gyenis, Inaki San Pedro, Stephen J. Summers, and Péter Vecsernyés for the cooperation on the topic of the book and in particular for allowing us to use material in joint publications.

In our work we also have benefited greatly from collaborations and informal discussions with a number of other colleagues. These include Nuel Belnap, Arthur Fine, Jeremy Butterfield, Rob Clifton, Gerd Grasshoff, David Malament, Tomasz Placek, Samuel Portman, Elliott Sober, Leszek Wronski, and Adrien Wüthrich – we thank them all for their interest in our work and for their readiness to share with us their insights and views.

The research that the book is based on was partially supported by several small grants from the Hungarian National Science Found (OTKA). The final writing was facilitated by the OTKA grant with contract number K100715.

G. Hofer-Szabó (Budapest)

M. Rédei (London)

L. E. Szabó (Budapest)