Contents

Foreword by Susan S. Hubbard
Preface vii
1 Fundamentals of the self-potential method 1
1.1 Measurements 1
1.2 The electrical double layer 11
1.3 Brief history 14
1.4 The Poisson equation 16
1.5 Sources of noise 17
1.6 Conclusions 19
Exercises 19
2 Development of a fundamental theory 23
2.1 Non-equilibrium thermodynamic 23
2.2 Upscaling: from local to macroscopic equations 44
2.3 The geobattery and biogeobattery concepts 68
2.4 Conclusions 75
Exercises 77
3 Laboratory investigations 82
3.1 Analyzing low-frequency electrical properties 82
3.2 Investigating the geobattery concept in the laboratory 99
3.3 Conclusions 104
Exercises 105
4 Forward and inverse modeling 110
4.1 Position of the problem 110
4.2 Gradient-based approaches and their limitations 114
4.3 Fully coupled inversion 131
Contents

4.4 Conclusions 148
Exercises 149

5 Applications to geohazards 154
5.1 Landslides and flank stability 154
5.2 Sinkhole detection 160
5.3 Detection of cavities 167
5.4 Leakages in dams and embankments 171
5.5 Conclusion 191

6 Application to water resources 192
6.1 Pumping tests 192
6.2 Flow in the vadose zone 209
6.3 Catchments hydrogeology 219
6.4 Contaminant plumes 232
6.5 Conclusions 243
Exercises 243

7 Application to hydrothermal systems 245
7.1 Stochastic inversion of temperature and self-potential data 245
7.2 The Cerro Prieto case study 261
7.3 Gradient-based approach applied to hydrothermal fields 268
7.4 Conclusions 282
Exercises 282

8 Seismoelectric coupling 284
8.1 Position of the problem 284
8.2 Seismoelectric theory in saturated media 286
8.3 Numerical modeling 291
8.4 Application in saturated conditions 293
8.5 Seismoelectric theory in unsaturated media 298
8.6 Application in two-phase flow conditions 319
8.7 Localization of hydromechanical events 326
8.8 Seismic beamforming and the formation of electrical bursts 335
8.9 Conclusions 338
Exercises 339

Appendix A A simple model of the Stern layer 342
Appendix B The u–p formulation of poroelasticity 345
References 348
Index 367

The color plate section can be found between pages 178 and 179.