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Preface

The purpose of this book is to introduce a wide range of readers – from the professional
programmer to the computer science student – to the rich world of functional programming
using the F# programming language. The book is intended as the textbook in a course on
functional programming and aims at showing the role of functional programming in a wide
spectrum of applications ranging from computer science examples over database examples
to systems that engage in a dialogue with a user.

Why functional programming using F#?
Functional programming languages have existed in academia for more than a quarter of a
century, starting with the untyped Lisp language, followed by strongly typed languages like
Haskell and Standard ML.

The penetration of functional languages to the software industry has, nevertheless, been
surprisingly slow. The reason is probably lack of support of functional languages by com-
mercial software development platforms, and software development managers are reluctant
to base software development on languages living in a non-commercial environment.

This state of affairs has been changed completely by the appearance of F#, an open-
source, full-blown functional language integrated in the Visual Studio development platform
and with access to all features in the .NET program library. The language is also supported
on Linux and MAC systems using the Mono platform.

The background
The material in this book has been developed in connection with courses taught at the Tech-
nical University of Denmark, originating from the textbook Introduction to Programming
Using SML by Hansen and Rischel (Addison-Wesley, 1999).

It has been an exciting experience for us to learn the many elegant and useful features of
the F# language, and this excitement is hopefully transferred to the reader of this book.

The chapters
• Chapter 1: The basic concepts of F#, including values, types and recursive functions, are

introduced in a manner that allows readers to solve interesting problems from the start.
• Chapter 2: A thorough introduction to the basic types in F# is given, together with a gentle

introduction to the notion of higher-order functions.
• Chapter 3: The simplest composite types of F#, tuples and records, are introduced. They

allow several values to be grouped together into one component. Furthermore, tagged
values are introduced.

ix
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x Preface

• Chapter 4: A list is a finite sequence of values with the same type. Standard recursions on
lists are studied and examples illustrating a model-based approach to functional program-
ming are given.

• Chapter 5: The concepts of sets and maps are introduced and the powerful F# collection
libraries for lists, sets and maps are studied and applied in connection with a model-based
approach.

• Chapter 6: The concept of finite tree is introduced and illustrated through a broad selection
of examples.

• Chapter 7: It is shown how users can make their own libraries by means of modules
consisting of signature and implementation files. Furthermore, object-oriented features of
F# are mentioned.

• Chapter 8: Imperative features of F# are introduced, including the array part of the col-
lection library and the imperative sets and maps from the .NET framework.

• Chapter 9: The memory management concepts, stack, heap and garbage collection, are
described. Tail-recursive functions are introduced and two techniques for deriving such
functions are presented: one using accumulating parameters, the other continuations.
Their efficiency advantages are illustrated.

• Chapter 10: A variety of facilities for processing text are introduced, including regular
expressions, file operations, web-based operations and culture-dependent string ordering.
The facilities are illustrated using a real-world example.

• Chapter 11: A sequence is a, possibly infinite, collection of elements that are computed
on-demand only. Sequence functions are expressed using library functions or sequence
expressions that provide a step-by-step method for generating elements. Database tables
are viewed as sequences (using a type provider) and operations on databases are expressed
using query expressions.

• Chapter 12: The notion of computation expression, which is based on the theory of
monads, is studied and used to hide low-level details of a computation from its defini-
tion. Monadic parsing is used as a major example to illustrate the techniques.

• Chapter 13: This last chapter describes how to construct asynchronous reactive programs,
spending most of their time awaiting a request or a response from an external agent, and
parallel programs, exploiting the multi-core processor of the computer.

The first six chapters cover a standard curriculum in functional programming, while the
other chapters cover more advanced topics.

Further material
The book contains a large number of exercises, and further material is available at the book’s
homepage. A link to this homepage is found at:

http://www.cambridge.org/9781107019027

This material includes a complete set of slides for a course in functional programming plus
a collection of problems and descriptions of topics to be used in student projects.
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