
Functional Programming Using F#

This introduction to the principles of functional programming using F#
shows how to apply theoretical concepts to produce succinct and elegant
programs. The book shows how mainstream computer science problems
can be solved using functional programming. It introduces a model-based
approach exploiting the rich type system of F#. It also demonstrates the
role of functional programming in a wide spectrum of applications includ-
ing databases and systems that engage in a dialogue with a user. Coverage
also includes advanced features in the .NET library, the imperative fea-
tures of F# and topics such as sequences, computation expressions and
asynchronous computations.

With a broad spectrum of examples and exercises, the book is intended
for courses in functional programming as well as for self-study. Enhanc-
ing its use as a text is a website with downloadable programs, lecture
slides, mini-projects and links to further F# sources.

Michael R. Hansen is an Associate Professor in Computer Science at
the Technical University of Denmark. He is the author of Introduction to
Programming Using SML (with Hans Rischel) and Duration Calculus:
A Formal Approach to Real-Time Systems (with Zhou Chaochen).

Hans Rischel is a former Associate Professor in Computer Science at
the Technical University of Denmark. He is the author of Introduction to
Programming Using SML (with Michael R. Hansen).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

Functional Programming Using F#

MICHAEL R. HANSEN
Technical University of Denmark, Lyngby

HANS RISCHEL
Technical University of Denmark, Lyngby

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org
Information on this title: www.cambridge.org/9781107684065

C© Michael R. Hansen and Hans Rischel 2013

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Hansen, Michael R., author.
Functional programming Using F# / Michael R. Hansen, Technical University of Denmark,
Lyngby, Hans Rischel, Technical University of Denmark, Lyngby.

pages cm
Includes bibliographical references and index.
ISBN 978-1-107-01902-7 (hardback) – ISBN 978-1-107-68406-5 (paperback)
1. Functional programming (Computer science) 2. F# (Computer program language)
I. Rischel, Hans, author. II. Title.
QA76.62.H37 2013
005.1′14–dc23 2012040414

ISBN 978-1-107-01902-7 Hardback
ISBN 978-1-107-68406-5 Paperback

Additional resources for this publication at http://www.cambridge.org/9781107019027

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for
external or third-party Internet websites referred to in this publication and does not guarantee
that any content on such websites is, or will remain, accurate or appropriate.

32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

Reprinted 2015

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

Contents

Preface page ix

1 Getting started 1
1.1 Values, types, identifiers and declarations 1
1.2 Simple function declarations 2
1.3 Anonymous functions. Function expressions 4
1.4 Recursion 6
1.5 Pairs 11
1.6 Types and type checking 13
1.7 Bindings and environments 14
1.8 Euclid’s algorithm 15
1.9 Evaluations with environments 17
1.10 Free-standing programs 19

Summary 19
Exercises 20

2 Values, operators, expressions and functions 21
2.1 Numbers. Truth values. The unit type 21
2.2 Operator precedence and association 23
2.3 Characters and strings 24
2.4 If-then-else expressions 28
2.5 Overloaded functions and operators 29
2.6 Type inference 31
2.7 Functions are first-class citizens 31
2.8 Closures 34
2.9 Declaring prefix and infix operators 35
2.10 Equality and ordering 36
2.11 Function application operators |> and <| 38
2.12 Summary of the basic types 38

Summary 39
Exercises 39

3 Tuples, records and tagged values 43
3.1 Tuples 43
3.2 Polymorphism 48
3.3 Example: Geometric vectors 48
3.4 Records 50

v

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

vi Contents

3.5 Example: Quadratic equations 52
3.6 Locally declared identifiers 54
3.7 Example: Rational numbers. Invariants 56
3.8 Tagged values. Constructors 58
3.9 Enumeration types 62
3.10 Exceptions 63
3.11 Partial functions. The option type 64

Summary 65
Exercises 66

4 Lists 67
4.1 The concept of a list 67
4.2 Construction and decomposition of lists 71
4.3 Typical recursions over lists 74
4.4 Polymorphism 78
4.5 The value restrictions on polymorphic expressions 81
4.6 Examples. A model-based approach 82

Summary 88
Exercises 89

5 Collections: Lists, maps and sets 93
5.1 Lists 93
5.2 Finite sets 104
5.3 Maps 113

Summary 119
Exercises 119

6 Finite trees 121
6.1 Chinese boxes 121
6.2 Symbolic differentiation 127
6.3 Binary trees. Parameterized types 131
6.4 Traversal of binary trees. Search trees 133
6.5 Expression trees 137
6.6 Trees with a variable number of sub-trees. Mutual recursion 138
6.7 Electrical circuits 142

Summary 144
Exercises 145

7 Modules 149
7.1 Abstractions 149
7.2 Signature and implementation 150
7.3 Type augmentation. Operators in modules 153
7.4 Type extension 155
7.5 Classes and objects 156
7.6 Parameterized modules. Type variables in signatures 157
7.7 Customizing equality, hashing and the string function 159
7.8 Customizing ordering and indexing 161
7.9 Example: Piecewise linear plane curves 162

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

Contents vii

Summary 170
Exercises 170

8 Imperative features 175
8.1 Locations 175
8.2 Operators on locations 176
8.3 Default values 179
8.4 Sequential composition 179
8.5 Mutable record fields 180
8.6 References 182
8.7 While loops 183
8.8 Imperative functions on lists and other collections 184
8.9 Imperative tree traversal 185
8.10 Arrays 186
8.11 Imperative set and map 188
8.12 Functions on collections. Enumerator functions 190
8.13 Imperative queue 194
8.14 Restrictions on polymorphic expressions 195

Summary 195
Exercises 196

9 Efficiency 197
9.1 Resource measures 197
9.2 Memory management 198
9.3 Two problems 204
9.4 Solutions using accumulating parameters 206
9.5 Iterative function declarations 209
9.6 Tail recursion obtained using continuations 212

Summary 216
Exercises 216

10 Text processing programs 219
10.1 Keyword index example: Problem statement 219
10.2 Capturing data using regular expressions 221
10.3 Text I/O 229
10.4 File handling. Save and restore values in files 230
10.5 Reserving, using and disposing resources 232
10.6 Culture-dependent information. String orderings 232
10.7 Conversion to textual form. Date and time 235
10.8 Keyword index example: The IndexGen program 238
10.9 Keyword index example: Analysis of a web-source 242
10.10 Keyword index example: Putting it all together 245

Summary 248
Exercises 249

11 Sequences 251
11.1 The sequence concept in F# 251
11.2 Some operations on sequences 254

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

viii Contents

11.3 Delays, recursion and side-effects 256
11.4 Example: Sieve of Eratosthenes 258
11.5 Limits of sequences: Newton-Raphson approximations 260
11.6 Sequence expressions 262
11.7 Specializations of sequences 266
11.8 Type providers and databases 267

Summary 277
Exercises 277

12 Computation expressions 279
12.1 The agenda when defining your own computations 280
12.2 Introducing computation expressions using sequence expressions 281
12.3 The basic functions: For and Yield 282
12.4 The technical setting when defining your own computations 284
12.5 Example: Expression evaluation with error handling 285
12.6 The basic functions: Bind, Return, ReturnFrom and Zero 286
12.7 Controlling the computations: Delay and Start 288
12.8 The basic function: Delay 290
12.9 The fundamental properties of For and Yield, Bind and Return 291
12.10 Monadic parsers 293

Summary 309
Exercises 309

13 Asynchronous and parallel computations 311
13.1 Multi-core processors, cache memories and main memory 311
13.2 Processes, threads and tasks 312
13.3 Challenges and pitfalls in concurrency 314
13.4 Asynchronous computations 316
13.5 Reactive programs 321
13.6 Parallel computations 328

Summary 335
Exercises 336

Appendix A Programs from the keyword example 339
A.1 Web source files 339
A.2 The IndexGen program 342
A.3 The NextLevelRefs program 344

Appendix B The TextProcessing library 346

Appendix C The dialogue program from Chapter 13 350

References 353
Index 355

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

Preface

The purpose of this book is to introduce a wide range of readers – from the professional
programmer to the computer science student – to the rich world of functional programming
using the F# programming language. The book is intended as the textbook in a course on
functional programming and aims at showing the role of functional programming in a wide
spectrum of applications ranging from computer science examples over database examples
to systems that engage in a dialogue with a user.

Why functional programming using F#?
Functional programming languages have existed in academia for more than a quarter of a
century, starting with the untyped Lisp language, followed by strongly typed languages like
Haskell and Standard ML.

The penetration of functional languages to the software industry has, nevertheless, been
surprisingly slow. The reason is probably lack of support of functional languages by com-
mercial software development platforms, and software development managers are reluctant
to base software development on languages living in a non-commercial environment.

This state of affairs has been changed completely by the appearance of F#, an open-
source, full-blown functional language integrated in the Visual Studio development platform
and with access to all features in the .NET program library. The language is also supported
on Linux and MAC systems using the Mono platform.

The background
The material in this book has been developed in connection with courses taught at the Tech-
nical University of Denmark, originating from the textbook Introduction to Programming
Using SML by Hansen and Rischel (Addison-Wesley, 1999).

It has been an exciting experience for us to learn the many elegant and useful features of
the F# language, and this excitement is hopefully transferred to the reader of this book.

The chapters
• Chapter 1: The basic concepts of F#, including values, types and recursive functions, are

introduced in a manner that allows readers to solve interesting problems from the start.
• Chapter 2: A thorough introduction to the basic types in F# is given, together with a gentle

introduction to the notion of higher-order functions.
• Chapter 3: The simplest composite types of F#, tuples and records, are introduced. They

allow several values to be grouped together into one component. Furthermore, tagged
values are introduced.

ix

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

x Preface

• Chapter 4: A list is a finite sequence of values with the same type. Standard recursions on
lists are studied and examples illustrating a model-based approach to functional program-
ming are given.

• Chapter 5: The concepts of sets and maps are introduced and the powerful F# collection
libraries for lists, sets and maps are studied and applied in connection with a model-based
approach.

• Chapter 6: The concept of finite tree is introduced and illustrated through a broad selection
of examples.

• Chapter 7: It is shown how users can make their own libraries by means of modules
consisting of signature and implementation files. Furthermore, object-oriented features of
F# are mentioned.

• Chapter 8: Imperative features of F# are introduced, including the array part of the col-
lection library and the imperative sets and maps from the .NET framework.

• Chapter 9: The memory management concepts, stack, heap and garbage collection, are
described. Tail-recursive functions are introduced and two techniques for deriving such
functions are presented: one using accumulating parameters, the other continuations.
Their efficiency advantages are illustrated.

• Chapter 10: A variety of facilities for processing text are introduced, including regular
expressions, file operations, web-based operations and culture-dependent string ordering.
The facilities are illustrated using a real-world example.

• Chapter 11: A sequence is a, possibly infinite, collection of elements that are computed
on-demand only. Sequence functions are expressed using library functions or sequence
expressions that provide a step-by-step method for generating elements. Database tables
are viewed as sequences (using a type provider) and operations on databases are expressed
using query expressions.

• Chapter 12: The notion of computation expression, which is based on the theory of
monads, is studied and used to hide low-level details of a computation from its defini-
tion. Monadic parsing is used as a major example to illustrate the techniques.

• Chapter 13: This last chapter describes how to construct asynchronous reactive programs,
spending most of their time awaiting a request or a response from an external agent, and
parallel programs, exploiting the multi-core processor of the computer.

The first six chapters cover a standard curriculum in functional programming, while the
other chapters cover more advanced topics.

Further material
The book contains a large number of exercises, and further material is available at the book’s
homepage. A link to this homepage is found at:

http://www.cambridge.org/9781107019027

This material includes a complete set of slides for a course in functional programming plus
a collection of problems and descriptions of topics to be used in student projects.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

Preface xi

Acknowledgments
Special thanks go to Peter Sestoft, Don Syme and Anh-Dung Phan. The idea to make a
textbook on functional programming on the basis of F# originates from Peter, who patiently
commented on the manuscript during its production and helped with advice and suggestions.
From the very start of this project we had the support of Don. This is strongly appreciated
and so is the help, clarifications and constructive comments that we received throughout this
project. Phan helped with many comments, suggestions and insights about the platform. We
are grateful for this help, for many discussions and for careful comments on all the chapters.

Furthermore, we are grateful to Nils Andersen, Mary E. Böker, Diego Colombo and Niels
Hallenberg for reading and commenting on the complete manuscript.

Earlier versions of this manuscript have been used in connection with courses at the Tech-
nical University of Denmark and the IT-University of Copenhagen. The comments we re-
ceived from the students in these courses are greatly appreciated.

Lyngby, July 31, 2012
Michael R. Hansen and Hans Rischel

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-01902-7 - Functional Programming Using F#
Michael R. Hansen and Hans Rischel
Frontmatter
More information

http://www.cambridge.org/9781107019027
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107019027:

